We report on experimental and numerical investigation of burst-mode supercontinuum generation in sapphire crystal. The experiments were performed using bursts consisting of two 190 fs, 1030 nm pulses with intra-burst repetition rates of 62.5 MHz and 2.5 GHz from an amplified 1 MHz Yb:KGW laser and revealed higher filamentation and supercontinuum generation threshold for the second pulse in the burst, which increases with the increase of intra-burst repetition rate. The experimental results were quantitatively reproduced numerically, using a developed model, which accounted for altered material response due to residual excitations remaining after propagation of the first pulse. The simulation results unveiled that residual free electron plasma and self-trapped excitons contribute to elevated densities of free electron plasma generated by the second pulse in the burst and so stronger plasma defocusing, significantly affecting its nonlinear propagation dynamics. The presented results identify the fundamental and practical issues for supercontinuum generation in solid-state materials using femtosecond pulse bursts with very high intra-burst repetition rates, which may also apply to the case of single pulses at very high repetition rate, where residual material excitations become relevant and should be accounted for.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963746PMC
http://dx.doi.org/10.1038/s41598-024-57928-9DOI Listing

Publication Analysis

Top Keywords

supercontinuum generation
16
intra-burst repetition
12
repetition rates
8
second pulse
8
pulse burst
8
repetition rate
8
free electron
8
electron plasma
8
supercontinuum
4
generation bulk
4

Similar Publications

In this Letter, we report an ultraflat high-power supercontinuum (SC) based on a low-loss short-length fluorotellurite fiber. A novel high-peak power dual-Raman soliton femtosecond laser is used as a pump source, which effectively extends the mid-infrared SC spectral range and enhances the flatness of the SC. Finally, we obtained a 10.

View Article and Find Full Text PDF

A coherent concatenation of multiple solitary waves may lead to a stable infrared and visible broadband filament in a ceramic YAG polycrystal. This self-trapped soliton train is leveraged to implement self-referenced multiplex coherent anti-Stokes Raman scattering (SR-M-CARS) imaging. Simulations and experiments illustrating the filamentation process and the concatenation of focusing-defocusing cycles in ceramic and crystal YAG are presented.

View Article and Find Full Text PDF

The control of temporal noise of the pump could add an additional degree of freedom to manipulate the spectrum of continuous-wave (CW) pumped SC generation. In this paper, we experimentally tailor the CW-pumped supercontinuum (SC) generation in a cascaded Raman random fiber laser (CRRFL) based on a 1 µm pump with tunable temporal dynamics. The pump is based on a spectrally filtered ytterbium-doped random fiber laser (YRFL) seed laser, which can be amplified to a 10 W level with the tunable temporal noise.

View Article and Find Full Text PDF

Nanoscale thickness Octave-spanning coherent supercontinuum light generation.

Light Sci Appl

January 2025

Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.

Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.

View Article and Find Full Text PDF

Small-molecule organic ice microfibers.

Sci Adv

January 2025

New Cornerstone Science Laboratory, State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Small organic molecules are essential building blocks of our universe, from cosmic dust to planetary surfaces to life. Compared to their well-known gaseous and liquid forms that have been extensively studied, small organic molecules in the form of ice at low temperatures receive much less attention. Here, we show that supercooled small-molecule droplets can be drawn into highly uniform amorphous ice microfibers with lengths up to 5 cm and diameters down to 200 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!