In the future, novel and highly pathogenic viruses may re-emerge, leading to a surge in healthcare demand. It is essential for urban epidemic control to investigate different cities' spatiotemporal spread characteristics and medical carrying capacity during the early stages of COVID-19. This study employed textual analysis, mathematical statistics, and spatial analysis methods to examine the situation in six highly affected Chinese cities. The findings reveal that these cities experienced three phases during the initial outbreak of COVID-19: "unknown-origin incubation", "Wuhan-related outbreak", and "local exposure outbreak". Cities with a high number of confirmed cases exhibited a multicore pattern, while those with fewer cases displayed a single-core pattern. The cores were distributed hierarchically in the central built-up areas of cities' economic, political, or transportation centers. The radii of these cores shrank as the central built-up area's level decreased, indicating a hierarchical decay and a core-edge structure. It suggests that decentralized built environments (non-clustered economies and populations) are less likely to facilitate large-scale epidemic clusters. Additionally, the deployment of designated hospitals in these cities was consistent with the spatial distribution of the epidemic; however, their carrying capacity requires urgent improvement. Ultimately, the essence of prevention and control is the governance of human activities and the efficient management of limited resources about individuals, places, and materials through leveraging IT and GIS technologies to address supply-demand contradictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963795PMC
http://dx.doi.org/10.1038/s41598-024-56077-3DOI Listing

Publication Analysis

Top Keywords

characteristics medical
8
chinese cities
8
carrying capacity
8
central built-up
8
cities
5
investigating spatiotemporal
4
spatiotemporal characteristics
4
medical response
4
response initial
4
initial covid-19
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!