Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota.

Int J Biol Macromol

College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. Electronic address:

Published: May 2024

Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131107DOI Listing

Publication Analysis

Top Keywords

loading capacity
16
hydroxyethyl starch-curcumin
8
starch-curcumin microspheres
8
ulcerative colitis
8
gut microbiota
8
hc-mss dhc-mss
8
cur
5
colon-targeted hydroxyethyl
4
microspheres
4
microspheres high
4

Similar Publications

Substrate-specific responses to mixing conditions in high-solids enzymatic hydrolysis: Insights from microcrystalline cellulose and dilute-acid pretreated corncob.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest, Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

This study investigates the mixing effects on the enzymatic hydrolysis of microcrystalline cellulose (MCC) and dilute-acid pretreated corncob substrates under high-solid conditions. Enzymatic hydrolysis experiments were conducted to assess cellulose conversion rates under varying mixing conditions (0, 50, 150, and 250 rpm) and solids loadings (5 %, 15 %, 25 %, and 35 %, w/v), and distinct physicochemical properties of the substrates were characterized. Additionally, the role of mixing conditions and solid loadings on cellulose hydrolysis kinetics and enzyme adsorption on both substrates and lignin were elucidated.

View Article and Find Full Text PDF

Chitosan is a kind of natural material with many unique physicochemical and biological properties related to antibacterial, antioxidant, and chelating. In recent years, chitosan-based nano gels (CS-NG) have been widely used in the field of cancer nanomedicine due to their excellent characteristics including biodegradability, biocompatibility, flexibility, large surface area, controllability, high loading capacity, and especially it can be engineered to become stimuli-responsive to tumor environments. In this review, we summarized the main synthesis approaches of CS-NGs including radical polymerization, self-assembly, microemulsion, and ionic gelation methods.

View Article and Find Full Text PDF

3D Printing Organogels with Bioderived Cyrene for High-Resolution Customized Hydrogel Structures.

Langmuir

January 2025

Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.

3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.

View Article and Find Full Text PDF

Evaluating multiannual sedimentary nutrient retention in agricultural two-stage channels.

Sci Rep

January 2025

Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.

The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.

View Article and Find Full Text PDF

Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!