Purpose: Osteoporotic vertebral compression fractures (OVCFs) are a highly prevalent source of morbidity and mortality, and preventive treatment has been demonstrated to be both effective and cost effective. To take advantage of the information available on existing chest and abdominal radiographs, the authors' study group has developed software to access these radiographs for OVCFs with high sensitivity and specificity using an established artificial intelligence deep learning algorithm. The aim of this analysis was to assess the potential cost-effectiveness of implementing this software.
Methods: A deterministic expected-value cost-utility model was created, combining a tree model and a Markov model, to compare the strategies of opportunistic screening for OVCFs against usual care. Total costs and total quality-adjusted life-years were calculated for each strategy. Screening and treatment costs were considered from a limited societal perspective, at 2022 prices.
Results: In the base case, assuming a cost of software implantation of $10 per patient screened, the screening strategy dominated the nonscreening strategy: it resulted in lower cost and increased quality-adjusted life-years. The lower cost was due primarily to the decreased costs associated with fracture treatment and decreased probability of requiring long-term care in patients who received preventive treatment. The screening strategy was dominant up to a cost of $46 per patient screened.
Conclusions: Artificial intelligence-based opportunistic screening for OVCFs on existing radiographs can be cost effective from a societal perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381181 | PMC |
http://dx.doi.org/10.1016/j.jacr.2023.11.029 | DOI Listing |
Acta Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFSurg Endosc
January 2025
Division of General Surgery, Bariatric Unit, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, 6, Weizman St, 6423906, Tel- Aviv, Israel.
Background: Safety in one anastomosis gastric bypass (OAGB) is judged by outcomes, but it seems reasonable to utilize best practices for safety, whose performance can be evaluated and therefore improved. We aimed to test an artificial intelligence-based model in real world for the evaluation of adherence to best practices in OAGB.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.
View Article and Find Full Text PDFPsychotherapy (Chic)
January 2025
Lyssn.io, Inc.
We developed an asynchronous online cognitive behavioral therapy (CBT) training tool that provides artificial intelligence- (AI-) enabled feedback to learners across eight CBT skills. We sought to evaluate the technical reliability and to ascertain how practitioners would use the tool to inform product iteration and future deployment. We conducted a single-arm 2-week field trial among behavioral health practitioners who treat outpatients with psychosis.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland.
Monitoring and assessing the level of lower limb motor skills using the Biodex System plays an important role in the training of football players and in post-traumatic rehabilitation. The aim of this study was to build and test an artificial intelligence-based model to assess the peak torque of the lower limb extensors and flexors. The model was based on real-world results in three groups: hearing ( = 19) and deaf football players ( = 28) and non-training deaf pupils ( = 46).
View Article and Find Full Text PDFFront Artif Intell
January 2025
Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.
Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!