A shell and tube heat exchanger (STHE) for heat recovery applications was studied to discover the intricacies of its optimization. To optimize performance, a hybrid optimization methodology was developed by combining the Neural Fitting Tool (NFTool), Particle Swarm Optimization (PSO), and Grey Relational Analysis (GRE). STHE heat exchangers were analyzed systematically using the Taguchi method to analyze the critical elements related to a particular response. To clarify the complex relationship between the heat exchanger efficiency and operational parameters, grey relational grades (GRGs) are first computed. A forecast of the grey relation coefficients was then conducted using NFTool to provide more insight into the complex dynamics. An optimized parameter with a grey coefficient was created after applying PSO analysis, resulting in a higher grey coefficient and improved performance of the heat exchanger. A major and far-reaching application of this study was based on heat recovery. A detailed comparison was conducted between the estimated values and the experimental results as a result of the hybrid optimization algorithm. In the current study, the results demonstrate that the proposed counter-flow shell and tube strategy is effective for optimizing performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962831 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298731 | PLOS |
Sci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:
MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.
View Article and Find Full Text PDFTalanta
December 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:
Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Huashan Hospital and Human Phenome Institute, Fudan University, 220 Handan Road, Shanghai, 200433, China.
Objective: This study aims to conduct a bibliometric analysis to explore research trends, collaboration patterns, and emerging themes in the PET/MR field based on published literature from 2010 to 2024.
Methods: A detailed literature search was performed using the Web of Science Core Collection (WoSCC) database with keywords related to PET/MR. A total of 4,349 publications were retrieved and analyzed using various bibliometric tools, including VOSviewer and CiteSpace.
J Phys Chem A
January 2025
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!