The development of high-efficiency organic solar cells (OSCs) processed from non-halogenated solvents is crucially important for their scale-up industry production. However, owing to the difficulty of regulating molecular aggregation, there is a huge efficiency gap between non-halogenated and halogenated solvent processed OSCs. Herein, we fabricate o-xylene processed OSCs with approaching 20 % efficiency by incorporating a trimeric guest acceptor named Tri-V into the PM6:L8-BO-X host blend. The incorporation of Tri-V effectively restricts the excessive aggregation of L8-BO-X, regulates the molecular packing and optimizes the phase-separation morphology, which leads to mitigated trap density states, reduced energy loss and suppressed charge recombination. Consequently, the PM6:L8-BO-X:Tri-V-based device achieves an efficiency of 19.82 %, representing the highest efficiency for non-halogenated solvent-processed OSCs reported to date. Noticeably, with the addition of Tri-V, the ternary device shows an improved photostability than binary PM6:L8-BO-X-based device, and maintains 80 % of the initial efficiency after continuous illumination for 1380 h. This work provides a feasible approach for fabricating high-efficiency, stable, eco-friendly OSCs, and sheds new light on the large-scale industrial production of OSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202404297 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.
Organic photovoltaic materials that can be processed via non-halogenated solvents are crucial for the large-area manufacturing of organic solar cells (OSCs). However, the limited available of electron acceptors with adequate solubility and favorable molecular packing presents a challenge in achieving efficient non-halogenated solvent-processed OSCs. Herein, inspired by the three-dimensional dimeric acceptor CH8-4, we employed a molecular isomerization strategy to synthesize its isomers, CH8-4A and CH8-4B, by tuning the position of fluorine (F) atom in the central unit.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China.
The development of high-efficiency organic solar cells (OSCs) processed from non-halogenated solvents is crucially important for their scale-up industry production. However, owing to the difficulty of regulating molecular aggregation, there is a huge efficiency gap between non-halogenated and halogenated solvent processed OSCs. Herein, we fabricate o-xylene processed OSCs with approaching 20 % efficiency by incorporating a trimeric guest acceptor named Tri-V into the PM6:L8-BO-X host blend.
View Article and Find Full Text PDFAdv Mater
January 2024
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Most top-rank organic solar cells (OSCs) are manufactured by the halogenated solvent chloroform, which possesses a narrow processing window due to its low-boiling point. Herein, based on two high-boiling solvents, halogenated solvent chlorobenzene (CB) and non-halogenated green solvent ortho-xylene (OX), preparing active layers with the hot solution is put forward to enhance the performance of the OSCs. In situ test and morphological characterization clarify that the hot-casting strategy assists in the fast and synchronous molecular assembly of both donor and acceptor in the active layer, contributing to preferable donor/acceptor ratio, vertical phase separation, and molecular stacking, which is beneficial to charge generation and extraction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2023
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.
High efficiency organic solar cells (OSCs) based on A-DA'D-A type small molecule acceptors (SMAs) were mostly fabricated by toxic halogenated solvent processing, and power conversion efficiency (PCE) of the non-halogenated solvent processed OSCs is mainly restricted by the excessive aggregation of the SMAs. To address this issue, we developed two vinyl π-spacer linking-site isomerized giant molecule acceptors (GMAs) with the π-spacer linking on the inner carbon (EV-i) or out carbon (EV-o) of benzene end group of the SMA with longer alkyl side chains (ECOD) for the capability of non-halogenated solvent-processing. Interestingly, EV-i possesses a twisted molecular structure but enhanced conjugation, while EV-o shows a better planar molecular structure but weakened conjugation.
View Article and Find Full Text PDFNat Commun
October 2022
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
Power conversion efficiency and long-term stability are two critical metrics for evaluating the commercial potential of organic photovoltaics. Although the field has witnessed a rapid progress of efficiency towards 19%, the intrinsic trade-off between efficiency and stability is still a challenging issue for bulk-heterojunction cells due to the very delicate crystallization dynamics of organic species. Herein, we developed a class of non-fullerene acceptors with varied side groups as an alternative to aliphatic chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!