A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Artificial Intelligence to Interpret Clinical Flow Cytometry Datasets for Automated Disease Diagnosis and/or Monitoring. | LitMetric

Flow cytometry (FC) is routinely used for hematological disease diagnosis and monitoring. Advancement in this technology allows us to measure an increasing number of markers simultaneously, generating complex high-dimensional datasets. However, current analytic software and methods rely on experienced analysts to perform labor-intensive manual inspection and interpretation on a series of 2-dimensional plots via a complex, sequential gating process. With an aggravating shortage of professionals and growing demands, it is very challenging to provide the FC analysis results in a fast, accurate, and reproducible way. Artificial intelligence has been widely used in many sectors to develop automated detection or classification tools. Here we describe a type of machine learning method for developing automated disease classification and residual disease monitoring on clinical flow datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3738-8_16DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
clinical flow
8
flow cytometry
8
automated disease
8
disease diagnosis
8
intelligence interpret
4
interpret clinical
4
cytometry datasets
4
datasets automated
4
disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!