Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flow cytometry (FC) is routinely used for hematological disease diagnosis and monitoring. Advancement in this technology allows us to measure an increasing number of markers simultaneously, generating complex high-dimensional datasets. However, current analytic software and methods rely on experienced analysts to perform labor-intensive manual inspection and interpretation on a series of 2-dimensional plots via a complex, sequential gating process. With an aggravating shortage of professionals and growing demands, it is very challenging to provide the FC analysis results in a fast, accurate, and reproducible way. Artificial intelligence has been widely used in many sectors to develop automated detection or classification tools. Here we describe a type of machine learning method for developing automated disease classification and residual disease monitoring on clinical flow datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3738-8_16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!