With the continuous development of global industry and the increasing demand for lithium resources, recycling valuable lithium from industrial solid waste is necessary for sustainable development and environmental friendliness. Herein, we employed ion imprinting and capacitive deionization to prepare a new electrode material for lithium-ion selective recovery. The material morphology and structure were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and other characterization methods, and the adsorption mechanism and water clusters were correlated using the density functional theory. The electrode material exhibited a maximum adsorption capacity of 36.94 mg/g at a Li concentration of 600 mg/L. The selective separation factors for Na, K, Mg, and Al in complex solution environments were 2.07, 9.82, 1.80, and 8.45, respectively. After undergoing five regeneration cycles, the material retained 91.81% of the initial Li adsorption capacity. Meanwhile, the electrochemical adsorption capacity for Li was more than twice the corresponding conventional physical adsorption capacity because electrochemical adsorption provides the energy needed for deprotonation, enabling exposure of the cavities of the crown ether molecules to enrich the active sites. The proposed environment-friendly separation approach offers excellent selectivity for Li recovery and addresses the growing demand for Li resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-32991-x | DOI Listing |
Chemistry
January 2025
Southeast University, School of Chemistry and Chemical Engineering, Dongnan Daxue Road 2, 211189, Nanjing, CHINA.
The design of well-engineered bifunctional electrocatalysts is crucial for achieving durable and efficient performance in overall water splitting. In this study, Ru-doped FeMn-MOF-74 itself has Ru sites and generates FeMnOOH under catalytic conditions, forming dual active sites for overall water splitting. Density functional theory (DFT) calculations demonstrate that the Ru dopants exhibit optimized binding strength for H* and enhanced hydrogen evolution reaction (HER) performance.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China.
Extracting uranium from nuclear wastewater is vital for environmental and human health protection. However, despite progress in uranium extraction, there remains a demand for an optimized adsorbent with improved capability, efficiency, and selectivity. To bridge this gap, 1,2,3,4-butane tetracarboxylic acid (BTCA)-modified MIL-101 was synthesized through a simple hydrothermal reaction between amino-modified MIL-101 (MIL-101-NH) and BTCA.
View Article and Find Full Text PDFJ Sep Sci
January 2025
School of Chemistry and Environment, Southwest Minzu University, Chengdu, China.
Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!