We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-024-01836-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!