Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963570PMC
http://dx.doi.org/10.1007/s10856-024-06783-1DOI Listing

Publication Analysis

Top Keywords

human dermal
12
dermal fibroblasts
12
free-radical polymerization
8
preparation xyloglucan-grafted
4
xyloglucan-grafted polyn-hydroxyethyl
4
polyn-hydroxyethyl acrylamide
4
copolymer
4
acrylamide copolymer
4
copolymer free-radical
4
polymerization vitro
4

Similar Publications

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin.

View Article and Find Full Text PDF

Why Does an "Avatar Nose" Appear After Dermal Filler Injection? Insights From a Cadaveric Study on the Nasofrontal Ligament.

Dermatol Surg

January 2025

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seodaemun-gu, Seoul, Korea.

Background: Nonsurgical rhinoplasty (NSR) with dermal fillers has gained popularity because of its immediate and visible results, minimal downtime, and long-lasting effects. However, complications such as filler migration can lead to the development of the "Avatar nose," a condition where the nose appears unnaturally wide and bulbous in the nasion area, disrupting facial harmony. This phenomenon is often exacerbated by the presence of a taut nasofrontal ligament, which tethers the periosteum to the dermal layer and influences nasal contour.

View Article and Find Full Text PDF

Background: Aging reduces the production of hyaluronic acid (HA) in the skin, leading to wrinkles and sagging. HA-based skincare products are being studied to improve skin quality. This systematic review and meta-analysis aimed to compare the effectiveness of HA-based injectable products for reducing wrinkles and enhancing skin elasticity, hydration, and radiation.

View Article and Find Full Text PDF

Background Pre-pectoral implant-based breast reconstruction has become increasingly popular because it is associated with less postoperative pain and earlier recovery than traditional sub-pectoral techniques. Acellular dermal matrix (ADM) in pre-pectoral reconstruction is thought to provide additional support for the implant and improve cosmetic outcomes. However, it leads to additional costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!