A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Porous Mg-Zn-Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior. | LitMetric

Porous Mg-Zn-Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior.

J Mater Sci Mater Med

Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.

Published: March 2024

Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 μm) and interconnected pores (150-200 μm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963566PMC
http://dx.doi.org/10.1007/s10856-023-06754-yDOI Listing

Publication Analysis

Top Keywords

mg-based scaffolds
16
scaffolds
8
scaffolds bone
8
bone repair
8
mechanical properties
8
degradation behavior
8
biodegradable porous
8
porous scaffolds
8
porous mg-based
8
porous
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!