Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent advances in electrocardiogram (ECG) diagnosis and monitoring have triggered a demand for smart and wearable ECG electrodes and readout systems. Here, we report the development of a fully screen-printed gentle-to-skin wet ECG electrode integrated with a scaled-down printed circuit board (PCB) packaged inside a 3D-printed antenna-on-package (AoP). All three components of the wet ECG electrode (i.e., silver nanowire-based conductive part, electrode gel, and adhesive gel) are screen-printed on a flexible plastic substrate and only require 265 times less metal for the conductive part and 176 times less ECG electrode gel than the standard commercial wet ECG electrodes. In addition, our electrically small AoP achieved a maximum read range of 142 m and offers a 4 times larger wireless communication range than the typical commercial chip antenna. The adult volunteers' study results indicated that our system recorded ECG data that correlated well with data from a commercial ECG system and electrodes. Furthermore, in the context of a 12-lead ECG diagnostic system, the fully printed wet ECG electrodes demonstrated a performance similar to that of commercially available wet ECG electrodes while being gentle on the skin. This was confirmed through a blind review method by two cardiology consultants and one family medicine consultant, validating the consistency of the diagnostic information obtained from both electrodes. In conclusion, these findings highlight the potential of fully screen-printed wet ECG electrodes for both monitoring and diagnostic purposes. These electrodes could serve as potential candidates for clinical practice, and the screen-printing method has the capability to facilitate industrial mass production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022287 | PMC |
http://dx.doi.org/10.1021/acsnano.3c12477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!