Pharmaceutical residues in sediments are concerning as ubiquitous emerging contaminants. Pyrite is the most abundant sulfide minerals in the estuarine and coastal sediments, making it a major sink for pharmaceutical pollutants such as sulfamethoxazole (SMX). However, research on the adsorption and redox behaviors of SMX on the pyrite surface is limited. Here, we investigated the impact of the nonphotochemical process of pyrite on the fate of coexisting SMX. Remarkably, sulfur vacancies (SVs) on pyrite promoted the generation of nonradical species (hydrogen peroxide, HO and singlet oxygen, O), thereby exhibiting prominent SMX degradation performance under darkness. Nonradical O contributed approximately 73.1% of the total SMX degradation. The SVs with high surrounding electron density showed an advanced affinity for adsorbing O and then initiated redox reactions in the sediment electron-storing geobattery pyrite, resulting in the extensive generation of HO through a two-electron oxygen reduction pathway. Surface Fe(III) (hydro)oxides on pyrite facilitated the decomposition of HO to O generation. Distinct nonradical products were observed in all investigated estuarine and coastal samples with the concentrations of HO ranging from 1.96 to 2.94 μM, while the concentrations of O ranged from 4.63 × 10 to 8.93 × 10 M. This dark-redox pathway outperformed traditional photochemical routes for pollutant degradation, broadening the possibilities for nonradical species use in estuarine and coastal sediments. Our study highlighted the SV-triggered process as a ubiquitous yet previously overlooked source of nonradical species, which offered fresh insights into geochemical processes and the dynamics of pollutants in regions of frequent redox oscillations and sulfur-rich sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c09316DOI Listing

Publication Analysis

Top Keywords

estuarine coastal
12
nonradical species
12
sulfur vacancies
8
singlet oxygen
8
coastal sediments
8
smx degradation
8
pyrite
7
nonradical
6
sediments
5
smx
5

Similar Publications

As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.

View Article and Find Full Text PDF

Effectiveness of artificially planted mangroves on remediation of metals released from ship-breaking activities.

Mar Pollut Bull

January 2025

Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:

The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.

View Article and Find Full Text PDF

Dynamics and Insights into the Unique Ecological Guild of Fungi in Bacteria-Bioaugmented Anaerobic Digesters.

J Fungi (Basel)

January 2025

Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa.

Anaerobic digesters host a variety of microorganisms, and they work together to produce biogas. While bacterial and archaeal communities have been well explored using molecular techniques, fungal community structures remain relatively understudied. The present study aims to investigate the dynamics and potential ecological functions of the predominant fungi in bacteria-bioaugmented anaerobic digesters.

View Article and Find Full Text PDF

A Comprehensive Modeling of Microplastic Emission from Wastewater Treatment Plants to the Sea via Rivers in China.

Environ Sci Technol

January 2025

Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Wastewater treatment plants (WWTPs) are significant sources of microplastic (MP) emissions. In order to quantify the potential MP emission from WWTPs, a database of more than 10,000 WWTPs in China with an estimated MP emission rate was built. The MP riverine retention after emission was also estimated based on Stokes' law for both fragments and fibers.

View Article and Find Full Text PDF

Estuarine ecosystems have been threatened by increasing anthropogenic and natural pressures, yet the integral understanding of their stability characteristics of microbial communities at taxonomic, habitat, and spatial scales remains limited. In this study, the Mulan River estuary in southeastern China was selected to compare the stability characteristics of bacterial and protistan communities in water and sediments over three hydrological periods, and to explore their spatial variations along the estuarine continuum from river to ocean. The potential driving mechanisms of stability characteristics were also explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!