Within the context of fewest-switch surface hopping (FSSH) dynamics, one often wishes to remove the angular component of the derivative coupling between states J and K. In a previous set of papers, Shu et al. [J. Phys. Chem. Lett. 11, 1135-1140 (2020)] posited one approach for such a removal based on direct projection, while we isolated a second approach by constructing and differentiating a rotationally invariant basis. Unfortunately, neither approach was able to demonstrate a one-electron operatorÔ whose matrix element JÔK was the angular component of the derivative coupling. Here, we show that a one-electron operator can, in fact, be constructed efficiently in a semi-local fashion. The present results yield physical insight into designing new surface hopping algorithms and are of immediate use for FSSH calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0192083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!