Cellular pathways that detect DNA damage are useful for identifying genes that suppress DNA damage, which can cause genome instability and cancer predisposition syndromes when mutated. We identified 199 high-confidence and 530 low-confidence DNA damage-suppressing (DDS) genes in Saccharomyces cerevisiae through a whole-genome screen for mutations inducing Hug1 expression, a focused screen for mutations inducing Ddc2 foci, and data from previous screens for mutations causing Rad52 foci accumulation and Rnr3 induction. We also identified 286 high-confidence and 394 low-confidence diverse genome instability-suppressing (DGIS) genes through a whole-genome screen for mutations resulting in increased gross chromosomal rearrangements and data from previous screens for mutations causing increased genome instability as assessed in a diversity of genome instability assays. Genes that suppress both pathways (DDS+ DGIS+) prevent or repair DNA replication damage and likely include genes preventing collisions between the replication and transcription machineries. DDS+ DGIS- genes, including many transcription-related genes, likely suppress damage that is normally repaired properly or prevent inappropriate signaling, whereas DDS- DGIS+ genes, like PIF1, do not suppress damage but likely promote its proper, nonmutagenic repair. Thus, induction of DNA damage markers is not a reliable indicator of increased genome instability, and the DDS and DGIS categories define mechanistically distinct groups of genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152081 | PMC |
http://dx.doi.org/10.1093/g3journal/jkae064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!