African swine fever virus causes a lethal hemorrhagic disease of domestic pigs. The NAM P1/1995 isolate was originally described as genotype XVIII; however, full genome sequencing revealed that this assignment was incorrect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008121PMC
http://dx.doi.org/10.1128/mra.00067-24DOI Listing

Publication Analysis

Top Keywords

african swine
8
swine fever
8
fever virus
8
virus nam
4
nam p1/95
4
p1/95 mixture
4
mixture genotype
4
genotype genotype
4
genotype viii
4
viii viruses
4

Similar Publications

An update on active and passive surveillance for African swine fever in the Dominican Republic.

Sci Rep

January 2025

Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.

African swine fever (ASF) is a viral, hemorrhagic disease of swine that is reportable to the World Organisation for Animal Health. Since 2007, ASF has been expanding globally and causing severe disruption to the global swine industry. In 2021, ASF was detected in the Dominican Republic, prompting an emergency response from local and international officials.

View Article and Find Full Text PDF

Ferritin nanoparticles significantly enhance the immune response to the African swine fever virus p34 protein.

Int J Pharm

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:

Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).

View Article and Find Full Text PDF

African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system.

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

African swine fever (ASF), a severe and highly contagious haemorrhagic viral disease of pigs, is becoming a major threat not only in Malaysia but around the world. The first confirmed case of ASF in Malaysia was reported in February 2021. Despite the emergence of ASF in Malaysia, genetic information on this causative pathogen for the local livestock is still limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!