AI Article Synopsis

  • The study explores the effectiveness of high-resolution free-breathing stress perfusion cardiovascular magnetic resonance (SP-CMR) in diagnosing coronary artery disease (CAD) compared to invasive coronary angiography (ICA) with fractional flow reserve (FFR) measurement.
  • A total of 703 patients underwent SP-CMR, with a focus on generating myocardial blood flow (MBF) maps to calculate myocardial perfusion reserve (MPR) and assess coronary vessels' health.
  • The findings indicate that specific stress MBF and MPR values can accurately identify functionally significant CAD, demonstrating the potential of this automated SP-CMR technique for improved diagnostic accuracy.

Article Abstract

Aims: Current assessment of myocardial ischaemia from stress perfusion cardiovascular magnetic resonance (SP-CMR) largely relies on visual interpretation. This study investigated the use of high-resolution free-breathing SP-CMR with automated quantitative mapping in the diagnosis of coronary artery disease (CAD). Diagnostic performance was evaluated against invasive coronary angiography (ICA) with fractional flow reserve (FFR) measurement.

Methods And Results: Seven hundred and three patients were recruited for SP-CMR using the research sequence at 3 Tesla. Of those receiving ICA within 6 months, 80 patients had either FFR measurement or identification of a chronic total occlusion (CTO) with inducible perfusion defects seen on SP-CMR. Myocardial blood flow (MBF) maps were automatically generated in-line on the scanner following image acquisition at hyperaemic stress and rest, allowing myocardial perfusion reserve (MPR) calculation. Seventy-five coronary vessels assessed by FFR and 28 vessels with CTO were evaluated at both segmental and coronary territory level. Coronary territory stress MBF and MPR were reduced in FFR-positive (≤0.80) regions [median stress MBF: 1.74 (0.90-2.17) mL/min/g; MPR: 1.67 (1.10-1.89)] compared with FFR-negative regions [stress MBF: 2.50 (2.15-2.95) mL/min/g; MPR 2.35 (2.06-2.54) P < 0.001 for both]. Stress MBF ≤ 1.94 mL/min/g and MPR ≤ 1.97 accurately detected FFR-positive CAD on a per-vessel basis (area under the curve: 0.85 and 0.96, respectively; P < 0.001 for both).

Conclusion: A novel scanner-integrated high-resolution free-breathing SP-CMR sequence with automated in-line perfusion mapping is presented which accurately detects functionally significant CAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210990PMC
http://dx.doi.org/10.1093/ehjci/jeae084DOI Listing

Publication Analysis

Top Keywords

high-resolution free-breathing
12
stress mbf
12
automated quantitative
8
myocardial perfusion
8
perfusion cardiovascular
8
cardiovascular magnetic
8
magnetic resonance
8
coronary artery
8
artery disease
8
free-breathing sp-cmr
8

Similar Publications

Background: Respiratory motion irregularities in lung cancer patients are common and can be severe during multi-fractional (∼20 mins/fraction) radiotherapy. However, the current clinical standard of motion management is to use a single-breath respiratory-correlated four-dimension computed tomography (RC-4DCT or 4DCT) to estimate tumor motion to delineate the internal tumor volume (ITV), covering the trajectory of tumor motion, as a treatment target.

Purpose: To develop a novel multi-breath time-resolved (TR) 4DCT using the super-resolution reconstruction framework with TR 4D magnetic resonance imaging (TR-4DMRI) as guidance for patient-specific breathing irregularity assessment, overcoming the shortcomings of RC-4DCT, including binning artifacts and single-breath limitations.

View Article and Find Full Text PDF

Pulmonary Structural MRI using Free-Breathing, Self-Gated Ultra-short Echo Time Imaging.

J Vis Exp

September 2024

Division of Pulmonary, Critical Care, and Sleep Medicine, Hoglund Biomedical Imaging Center, University of Kansas Medical Center;

High quality MRI of the lungs is challenged by low tissue density, fast MRI signal relaxation, and respiratory and cardiac motion. For these reasons, structural imaging of the lungs is performed almost exclusively using Computed Tomography (CT). However, CT imaging delivers ionizing radiation, and thus is less well suited for certain vulnerable populations (e.

View Article and Find Full Text PDF

Background: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.

View Article and Find Full Text PDF

Free-Breathing High-Resolution, Swap-Free, and Motion-Corrected Water/Fat Separation in Pediatric Abdominal MRI.

Invest Radiol

December 2024

From the Department of Radiology, Boston Children's Hospital, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.); and Harvard Medical School, Boston, MA (R. Nosrati, F.C., O.A., K.P., R. Nichols, P.C., M.A.B., A.T., S.B., S.K.W.).

Objectives: The T1-weighted GRE (gradient recalled echo) sequence with the Dixon technique for water/fat separation is an essential component of abdominal MRI (magnetic resonance imaging), useful in detecting tumors and characterizing hemorrhage/fat content. Unfortunately, the current implementation of this sequence suffers from several problems: (1) low resolution to maintain high pixel bandwidth and minimize chemical shift; (2) image blurring due to respiratory motion; (3) water/fat swapping due to the natural ambiguity between fat and water peaks; and (4) off-resonance fat blurring due to the multipeak nature of the fat spectrum. The goal of this study was to evaluate the image quality of water/fat separation using a high-resolution 3-point Dixon golden angle radial acquisition with retrospective motion compensation and multipeak fat modeling in children undergoing abdominal MRI.

View Article and Find Full Text PDF

Ultrahigh field magnetic resonance imaging (MRI) (≥ 7 T) has the potential to provide superior spatial resolution and unique image contrast. Apart from radiofrequency transmit inhomogeneities in the body at this field strength, imaging of the upper abdomen faces additional challenges associated with motion-induced ghosting artifacts. To address these challenges, the goal of this work was to develop a technique for high-resolution free-breathing upper abdominal MRI at 7 T with a large field of view.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!