AI Article Synopsis

  • - High-resolution spectroscopic techniques, including X-ray photoelectron and Auger spectra, were used to analyze gas phase -1,3-butadiene, supported by theoretical models.
  • - The resonant Auger spectra showed a complex progression of electronic states that localize around the carbon atoms, highlighting their unique contributions.
  • - The study demonstrates that nuclear ensemble methods can effectively simulate and interpret the evolving spectral features through population analysis, enhancing understanding of the electronic behavior in -1,3-butadiene.

Article Abstract

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase -1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00053fDOI Listing

Publication Analysis

Top Keywords

resonant auger
16
x-ray absorption
8
auger spectra
8
nuclear ensemble
8
electronic states
8
deconvolution x-ray
4
absorption spectrum
4
spectrum -13-butadiene
4
resonant
4
-13-butadiene resonant
4

Similar Publications

We present an theoretical method to calculate the resonant Auger spectrum in the presence of ultrafast dissociation. The method is demonstrated by deriving the L-VV resonant Auger spectrum mediated by the 2pσ* resonance in HCl, where the electronic Auger decay and nuclear dissociation occur on the same time scale. The Auger decay rates are calculated within the one-center approximation and are shown to vary significantly with the inter-nuclear distance.

View Article and Find Full Text PDF

Association of the Cervical Canal Area With Disability and Progression in People With Multiple Sclerosis.

Neurology

January 2025

From the Multiple Sclerosis Centre of Catalonia (Cemcat) & Neurology Department (N.M.-O., P.C.-M., N.B., A.V.-J., M.T., X.M., J.S.-G.), and Section of Neuroradiology (D.P., M.A., C.A., À.R.), Department of Radiology (IDI), Vall Hebron University Hospital, Barcelona; Neuroimaging Research Unit (P.V., M.M., A.M., P.P., M.A.R., M.F.), Division of Neuroscience, Neurology Unit, and Neurorehabilitation Unit (M.M., M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Multiple Sclerosis Center (MSC) (C.G., C.Z.), Department of Neurology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale; Faculty of Biomedical Sciences (C.G., C.Z.), Università della Svizzera Italiana (USI), Lugano, Switzerland; Faculty of Brain Sciences (F.B.), University College London Queen Square Institute of Neurology, University College London; National Institute for Health Research (F.B.), University College London Hospitals Biomedical Research Centre, United Kingdom; MS Center Amsterdam (F.B., M.M.S., E.M.M.S.), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, the Netherlands; Clinic of Neurology (A. Gallo, A.B.), and MRI Research Center SUN-FISM (A. Gallo, A.B.), Second University of Naples, Italy; Queen Square MS Centre (O.C., F.D.A., M.C.Y.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health Research (O.C., F.D.A.), Biomedical Research Centre, University College London Hospitals; Nuffield Department of Clinical Neurosciences (J.P., L.M.), Oxford, United Kingdom; Department of Neurology (A. Gass, P.E.), Mannheim Center of Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University; Institute of Neuroradiology (C.L., B.B.), St. Josef-Hospital Bochum, Ruhr University Bochum, Germany; Vita-Salute San Raffaele University (P.P., M.A.R., M.F.); Neurology Unit (P.P., M.A.R., M.F.), and Neuropshysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy.

Background And Objectives: In multiple sclerosis (MS), brain reserve serves as a protective factor against cognitive impairment. Previous research has suggested a structural counterpart in the spine-spinal cord reserve-seemed to be associated with physical disability. This study aimed to investigate the potential of the cervical canal area (CCaA) as a proxy for spinal cord reserve in a multicentric cohort of people with MS (PwMS).

View Article and Find Full Text PDF

Understanding electron transport in self-assembled monolayers on metal nanoparticles (NPs) is crucial for developing NP-based nanodevices. This study investigates ultrafast electron transport through aromatic molecules on NP surfaces resonant Auger electron spectroscopy (RAES) with a core-hole-clock (CHC) approach. Aromatic molecule-coated Au NPs are deposited to form condensed NP films, and flat monolayers are prepared for comparison.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMHs) are frequently observed on magnetic resonance imaging (MRI) in patients with cerebral amyloid angiopathy (CAA). The neuropathological substrates that underlie WMHs in CAA are unclear, and it remains largely unexplored whether the different WMH distribution patterns associated with CAA (posterior confluent and subcortical multispot) reflect alternative pathophysiological mechanisms.

Methods And Results: We performed a combined in vivo MRI-ex vivo MRI-neuropathological study in patients with definite CAA.

View Article and Find Full Text PDF

Does concomitant diazepam and ethanol use modulate age-related cognitive decline in mice?

Life Sci

December 2024

Univ. Lille, Inserm, CHU Lille Lille Neuroscience and Cognition, Degenerative and Vascular Cognitive Disorders, UMR-S1172, Pharmacology department, F-59000 Lille, France.

Article Synopsis
  • The study examined the long-term effects of chronic diazepam use combined with alcohol on memory in aging mice, focusing on their potential impact on cognitive function.
  • Mice were divided into four groups and underwent 16 weeks of treatment with differing combinations of ethanol and diazepam, followed by memory tests and brain chemistry assessments.
  • Results indicated that while combined use during treatment negatively affected memory performance, there were no lasting effects on memory or hippocampal chemistry after discontinuation, suggesting benefits of stopping these substances.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!