Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Health agencies rely upon survey-based physical measures to estimate the prevalence of key global health indicators such as hypertension. Such measures are usually collected by nonhealthcare worker personnel and are potentially subject to measurement error due to variations in interviewer technique and setting, termed "interviewer effects." In the context of physical measurements, particularly in low- and middle-income countries, interviewer-induced biases have not yet been examined. Using blood pressure as a case study, we aimed to determine the relative contribution of interviewer effects on the total variance of blood pressure measurements in three large nationally representative health surveys from the Global South. We utilized 169,681 observations between 2008 and 2019 from three health surveys (Indonesia Family Life Survey, National Income Dynamics Study of South Africa, and Longitudinal Aging Study in India). In a linear mixed model, we modeled systolic blood pressure as a continuous dependent variable and interviewer effects as random effects alongside individual factors as covariates. To quantify the interviewer effect-induced uncertainty in hypertension prevalence, we utilized a bootstrap approach comparing subsamples of observed blood pressure measurements to their adjusted counterparts. Our analysis revealed that the proportion of variation contributed by interviewers to blood pressure measurements was statistically significant but small: % depending on the cohort. Thus, hypertension prevalence estimates were not substantially impacted at national scales. However, individual extreme interviewers could account for measurement divergences as high as 12%. Thus, highly biased interviewers could have important impacts on hypertension estimates at the subdistrict level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959064 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!