Introduction: () is a single-celled flagellate which colonises the bee gastrointestinal tract and is highly prevalent in honey bees. This parasite is associated with colony losses. Honey bee () colonies were sampled from five apiaries in the north-eastern part of Poland for the phylogenetic analysis of .

Material And Methods: Each apiary consisted of approximately 60 bee colonies, of which 20 were randomly selected. Samples of 60 differently aged worker bees were collected from each colony and pooled. A total of 100 bee colonies from five apiaries were examined. Protozoa of the Trypanosomatidae family were identified by PCR. was detected in 47 (47%) of the samples. The 18S ribosomal (r) RNA amplicons of were sequenced by a commercial service. Their sequences were analysed with BLASTN and noted to be compatible with the GenBank sequences of this region of the organism's genome. A sequence analysis was performed using the BioEdit Sequence Alignment Editor and Clustal W software.

Results: The amplicon sequences of were 100% homologous with the sequences deposited in GenBank under accession numbers KM066243.1., KJ684964.1 and KM980181.1.

Conclusion: This is the first study to perform a phylogenetic analysis of in Polish honey bees. The analysis demonstrated high levels of genetic similarity between isolates of colonising apiaries in the north-eastern region of Poland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960264PMC
http://dx.doi.org/10.2478/jvetres-2024-0018DOI Listing

Publication Analysis

Top Keywords

phylogenetic analysis
12
honey bees
12
bee colonies
12
apiaries north-eastern
8
analysis trypanosomatid
4
trypanosomatid parasite
4
honey
4
parasite honey
4
bees
4
bees poland
4

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!