Cationic heterocycles, an important class of organic compounds soluble in polar solvents, have been gaining attention in the construction of fluorescent probes. This paper reports the quick synthesis of novel pyrido[1',2';2,3]imidazo[5,1-]isoquinoliniums starting from 2-(2-ethynylphenyl)imidazo[1,2-]pyridines at room temperature intramolecular cyclization by employing a catalytic amount of silver trifluoromethanesulfonate in addition to lithium trifluoromethanesulfonate and silica gel as the counter anion source and additive, respectively. The designed pyridoimidazoisoquinoliniums consisted of an imidazo[1,2-]pyridine fused isoquinolinium. The X-ray diffraction results revealed that pyrido[1',2';2,3]imidazo[5,1-]isoquinolinium trifluoromethanesulfonate contained considerable planar parent skeletons and interacted by π-π stacking with neighbouring molecules. Furthermore, in a methanol solution the designed 6-phenyl derivative exhibited strong fluorescence in the 420-450 nm region in addition to strong mitochondrial specificity in a cell staining assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958991 | PMC |
http://dx.doi.org/10.1039/d4ra01210k | DOI Listing |
J Org Chem
January 2025
College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
A facile copper-catalyzed, base-controlled cyclization reaction has been developed for the synthesis of 9-membered cycloalkyne and 6-membered heterocycle sultams under mild conditions. This protocol utilizes a copper-catalyzed intramolecular A (alkyne-aldehyde-amine) coupling reaction to efficiently synthesize 9-membered cycloalkyne sultams in yields up to 90%. Alternatively, by substituting NaHCO with DBU, the protocol achieves selective deprotection of the -propargyl group, thereby facilitating the formation of 6-membered heterocyclic sultams, also in high yields.
View Article and Find Full Text PDFChem Asian J
January 2025
Meiji Pharmaceutical University, Pharmaceutical Sciences, 2-522-1 Noshio, 204-8588, Kiyose, JAPAN.
The catalytic indirect reductive quenching method is facilitated by a combination of Ir(III) photoredox and sulfide dual-catalysis system. This study demonstrated a method for synthesizing multi-substituted furans by using a photoredox/sulfide dual-catalysis system. This method enables the synthesis of various furan derivatives, including spirofurans and phthalans.
View Article and Find Full Text PDFACS Omega
December 2024
Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels 1050, Belgium.
An in-depth experimental and computational study to rationalize the mechanism underlying the gold-catalyzed intramolecular hydroalkylation of ynamides to indenes is reported. Evaluating the reactivity of a set of deuterated ynamides and gold complexes allowed to get valuable insights into the mechanism of this reaction, while DFT calculations allowed to determine a plausible reaction pathway for this unprecedented transformation. This pathway involves the activation of the ynamide followed by a [1,5]-hydride shift from the highly reactive, in situ generated keteniminium ion, and a subsequent cyclization before deprotonation followed by a final protodeauration.
View Article and Find Full Text PDFOrg Lett
January 2025
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
Herein, visible-light-induced annulation of benzothioamides with sulfoxonium ylides to furnish thiazole derivatives is developed under transition-metal-, photocatalyst-, and oxidant-free conditions. This protocol exhibits good substrate scope, affording the desired products with satisfied yields in a mild and green manner. Detailed mechanistic studies suggest that the benzothioamide substrate plays a dual role in this reaction.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!