Recent advances in Raman spectroscopy have shown great potential for non-invasive analyte sensing, but the lack of a standardized optical phantom for these measurements has hindered further progress. While many research groups have developed optical phantoms that mimic bulk optical absorption and scattering, these materials typically have strong Raman scattering, making it difficult to distinguish metabolite signals. As a result, solid tissue phantoms for spectroscopy have been limited to highly scattering tissues such as bones and calcifications, and metabolite sensing has been primarily performed using liquid tissue phantoms. To address this issue, we have developed a layered skin-mimetic phantom that can support metabolite sensing through Raman spectroscopy. Our approach incorporates millifluidic vasculature that mimics blood vessels to allow for diffusion akin to metabolite diffusion in the skin. Furthermore, our skin phantoms are mechanically mimetic, providing an ideal model for development of minimally invasive optical techniques. By providing a standardized platform for measuring metabolites, our approach has the potential to facilitate critical developments in spectroscopic techniques and improve our understanding of metabolite dynamics .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956615PMC
http://dx.doi.org/10.1016/j.snb.2023.135240DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
skin-mimetic phantom
8
tissue phantoms
8
metabolite sensing
8
metabolite
5
engineering vascularized
4
vascularized skin-mimetic
4
phantom non-invasive
4
raman
4
non-invasive raman
4

Similar Publications

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as potential biomarkers for cancer diagnosis and efficacy prediction. Despite their promise, current exosome detection and isolation methods are cumbersome and time-consuming and often yield limited purity and quantity.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

An infrared, Raman, and X-ray database of battery interphase components.

Sci Data

January 2025

Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

Further improvements to lithium-ion and emerging battery technologies can be enabled by an improved understanding of the chemistry and working mechanisms of interphases that form at electrochemically active battery interfaces. However, it is difficult to collect and interpret spectra of interphases for several reasons, including the presence of a variety of compounds. To address this challenge, we herein present a vibrational spectroscopy and X-ray diffraction data library of ten compounds that have been identified as interphase constituents in lithium-ion or emerging battery chemistries.

View Article and Find Full Text PDF

Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!