Introduction: The improvement in oxygenation after helmet application in hypoxemic patients may be explained by the alveolar recruitment obtained with positive end expiratory pressure (PEEP) or by the administration of a more accurate inspiratory fraction of oxygen (FO). We have designed the "ZEEP-PEEP test", capable to distinguish between the FO-related or PEEP-related oxygenation improvement. Our primary aim was to describe the use of this test during helmet CPAP to assess the oxygenation improvement attributable to PEEP application.
Material And Methods: We performed a prospective physiological study including adult critically ill patients. Respiratory and hemodynamic parameters were recorded before helmet application (PRE step), after helmet application without PEEP (ZEEP step) and after the application of the PEEP valve (PEEP step), while maintaining a constant FiO. We defined as "PEEP responders" patients showing a PaO/FiO ratio improvement ≥10% after PEEP application.
Results: 93 patients were enrolled. Compared to the PRE step, PaO2/FiO2 ratio was significantly improved during helmet CPAP both at ZEEP and PEEP step (189 ± 55, 219 ± 74 and 241 ± 82 mmHg, respectively, p < 0.01). Both PEEP responders (41%) and non-responders showed a significant improvement of PaO2/FiO2 ratio after the application of helmet at ZEEP, PEEP responders also showed a significant improvement of oxygenation after PEEP application (208 ± 70 vs 267 ± 85, p < 0.01).
Conclusions: Helmet CPAP improved oxygenation. This improvement was not only due to the PEEP effect, but also to the increase of the effective inspired FiO. Performing the ZEEP-PEEP test may help to identify patients who benefit from PEEP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957420 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e28339 | DOI Listing |
J Craniofac Surg
January 2025
Division of Pediatric Craniofacial Surgery, Nemours Children's Health, Jacksonville, FL.
External rigid distraction is an established method for achieving subcranial Le Fort III advancement in severe syndromic craniosynostosis. Craniofacial surgeons commonly use halo-type devices for these corrections, as they allow for multiple vectors of pull and facilitate larger midfacial advancements. Although most complications related to their use involve pin displacement or infection, rare complications such as skull fractures have been reported.
View Article and Find Full Text PDFERJ Open Res
November 2024
Anaesthesia and Intensive Care Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.
Introduction: High-frequency percussive ventilation (HFPV) is a ventilation mode characterised by high-frequency breaths. This study investigated the impact of HFPV on gas exchange and clinical outcomes in acute respiratory failure (ARF) patients during spontaneous breathing, noninvasive ventilation (NIV) and invasive mechanical ventilation (iMV).
Methods: This systematic review included randomised and nonrandomised studies up to August 2023.
HardwareX
September 2024
Dokuz Eylul University, Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Turkey.
The global shortage of integrated circuits due to the COVID-19 pandemic has made it challenging to build biopotential acquisition devices like electroencephalography (EEG) hardware. To address this issue, a new hardware system using common ICs has been designed, which is cost-effective, precise, and easily accessible from global distributors. The hardware system comprises 8-channel inputs EEG hardware with a mobile headset capable of acquiring 5-30Hz EEG signals.
View Article and Find Full Text PDFSensors (Basel)
October 2024
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.
This paper presents significant improvements in the accuracy and computational efficiency of safety helmet detection within industrial environments through the optimization of the you only look once version 5 small (YOLOv5s) model structure and the enhancement of its loss function. We introduce the convolutional block attention module (CBAM) to bolster the model's sensitivity to key features, thereby enhancing detection accuracy. To address potential performance degradation issues associated with the complete intersection over union (CIoU) loss function in the original model, we implement the modified penalty-decay intersection over union (MPDIoU) loss function to achieve more stable and precise bounding box regression.
View Article and Find Full Text PDFCureus
October 2024
Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!