Refined asphalt was prepared by solvent extraction sedimentation based on the response surface design, using washing oil and kerosene as solvents and the coal tar pitch as raw materials. The mathematical models of the refined asphalt yield, quinoline insoluble (QI) content, ash content, solvent-to-oil ratio, aromatic-to-aliphatic hydrocarbon ratio, extraction temperature, and sedimentation time were proposed, analyzing the influence of each factor and their interactions on the response values. Therefore, the optimal combination of preparation process parameters and better operation window was obtained by optimizing the experiment. Meanwhile, refined asphalt with high QI content and low QI content was selected as raw material, and the needle coke was prepared through the process of carbonization and calcination. The influence of QI content on the composition and the structure of green coke and needle coke was investigated by X-ray diffraction (XRD), Raman spectra, and polarizing microscopy characterizations. The results showed that the solvent-to-oil ratio is 1.2, aromatic-to-aliphatic hydrocarbon ratio is 1.1, sedimentation time is 2 h, and extraction temperature is 110 °C, resulting in the yield of refined asphalt being 76%, QI content being less than 0.1%, and ash content being less than 0.05%, which meets the requirement of the high-quality needle coke. Otherwise, refined asphalt with lower QI content easily generates a mesophase with more fibers and a large structure in the thermal conversion process, and the corresponding green coke and needle coke have a relatively regular carbon microcrystalline structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955756 | PMC |
http://dx.doi.org/10.1021/acsomega.3c10019 | DOI Listing |
Materials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Highway Engineering Research Group, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
In this study, the practical application of self-healing asphalt mixtures incorporating steel wool fibers and induction heating was investigated, expanding upon previous research that primarily assessed the self-healing properties rather than optimizing the heating process. Specifically, the aim was to enhance the induction heating methodology for a semi-dense asphalt concrete mixture (AC 16 Surf 35/50 S). In this research, the induction heating parameters were refined to improve the self-healing capabilities, focusing on the following three key aspects: (i) energy consumption, (ii) heating rate, and (iii) heating homogeneity.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Department of Chemical Engineering, Universidad de Guadalajara, 1421 Blvd. Marcelino García Barragán, Guadalajara C.P. 44430, Jal., Mexico.
Sci Total Environ
November 2024
Universidad Andina Simón Bolívar (UASB), Área de Ambiente y Sustentabilidad, Quito, Ecuador.
This research analyses 24 years of oil extraction in blocks 16 and 67 of the Yasuní National Park (YNP) in the Amazonian Forest of Ecuador, one of the most biodiverse spaces in the world and with the current presence of ancient indigenous communities. As a novel contribution, we have carried out a Life-Cycle Assessment (LCA) that quantifies the footprints associated with the extraction, transportation, refining, distribution and final uses of the oil in four different scenarios (oil for asphalt use, electricity, marine fuel and passenger car transport). This study also sheds light on the energy return at the point of use of different oil-derivatives, and complements this with a qualitative analysis of the social, cultural and environmental implications for the Waorani communities.
View Article and Find Full Text PDFSensors (Basel)
April 2024
College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!