Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited. This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease ( = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958479 | PMC |
http://dx.doi.org/10.1016/j.ijpx.2024.100236 | DOI Listing |
FASEB J
December 2024
Faculty of Pharmacy, Alamein International University, Alamein, Egypt.
Individuals with metabolic syndrome have a high risk of developing cardiovascular disorders that is closely tied to visceral adipose tissue dysfunction, as well as an altered interaction between adipose tissue and the cardiovascular system. In metabolic syndrome, adipose tissue dysfunction is associated with increased hypertrophy, reduced vascularization, and hypoxia of adipocytes, leading to a pro-oxidative and pro-inflammatory environment. Among the pathways regulating adipose tissue homeostasis is the wingless-type mammary tumor virus integration site family (Wnt) signaling pathway, with both its canonical and non-canonical arms.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.
View Article and Find Full Text PDFPhysiol Rep
December 2024
Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.
View Article and Find Full Text PDFGastroenterology
December 2024
Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center and Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, TX. Electronic address:
Background & Aims: Dilated intercellular space (DIS) in esophageal epithelium, a sign of impaired barrier function, is a characteristic finding of GERD that also is found in obese patients without GERD. We have explored molecular mechanisms whereby adipose tissue products might impair esophageal barrier integrity.
Methods: We established cultures of visceral fat obtained during foregut surgery from obese and non-obese patients.
Cancer Lett
December 2024
Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China. Electronic address:
Cancer associated fibroblasts (CAFs) are the predominant stromal cells in the tumor microenvironment of gastric cancer (GC), interacting with both immune and tumor cells to drive cancer progression. However, the precise link between these interactions and their potential as therapeutic targets remains poorly understood. In this study, we identified for the first time that nicotinamide N-methyltransferase (NNMT) derived from CAFs promoted M2 macrophage polarization, which, in turn, facilitated the proliferation and migration of GC cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!