This article discusses the classification of micro- and nanoplastics (MNP), the routes of their exposure and the effects of MNP on the reproductive, respiratory, digestive and immune systems based on in vitro and in vivo studies, as well as available epidemiological data. The MNP can enter our body through inhalation, food or skin. The presence of microplastics (MP) in tap, bottled and deep sea water, as well as in sea salt, fruit and vegetables has been demonstrated. Due to their small size, MNP can be absorbed and easily distributed through the blood and lymphatic vessel system to tissues and organs. Recent studies have provided evidence of the accumulation of MNP in human lungs and even in the placenta. The accumulation of MNP in the body may have long-term effects and lead to health problems in humans, such as bronchitis, development of asthma, pulmonary fibrosis, inflammation and cancer. The information included in the article gives partial insight into how MNP may affect the human body. However, to fully assess the toxicity of MNP, comprehensive research is necessary, including standardization of MNP detection techniques and determination of the MNP content in food and water. It is also advisable to assess toxicokinetic parameters, as well as to determine the daily dose of exposure and interaction of MNP with various cells. Insufficient data on direct exposure to MNP in the work environment, as well as in other public places, constitutes a factor hindering the establishment of appropriate legal standards. In 2024, work on establishing the first act of EU law enabling the monitoring of MP in drinking water should be completed, which raises great hopes that in the future limit values for MNP in water and food and in workplaces will also be established. Med Pr Work Health Saf. 2024;75(1):81-96.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13075/mp.5893.01475 | DOI Listing |
J Agric Food Chem
January 2025
School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.
Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Biomedical Sciences, Kent State University, Kent, OH, USA.
Background: Accumulation of β-amyloid (Aβ) plaque in the brain is a pathological hallmark of Alzheimer's Disease (AD). We recently reported that the application of mild magnetic hyperthermia is feasible to target and disrupt Aβ plaques by means of generating localized heat on the surface of magnetic nanoparticles (MNPs) targeted to Aβ aggregates in response to a remotely applied alternating magnetic field (AMF) (Nanomedicine:NBM, 2021). The objective of the current study is to demonstrate the feasibility of mild magnetic hyperthermia stimulation (MNP/AMF) in clearing Aβ deposits in vivo using 5xFAD mice, a well-established transgenic AD mouse model.
View Article and Find Full Text PDFNanotheranostics
January 2025
Translational Research Laboratory, Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Pleural tuberculosis (pTB) is a diagnostic challenge because of its non-specific clinical features, lack of accurate diagnostic tools and paucibacillary nature of the disease. We, here describe the development of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) targeting 4 different (. ) antigens (GlcB, MPT51, MPT64 and CFP-10) for pTB diagnosis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Aim & Background: Increased efficacy with reduced side effects in cancer treatment is achieved through targeted distribution of anti-cancer medications. Because of their biocompatibility, biodegradability, low toxicity, and target ability under magnetic field, magnetic nanoparticles (MNP) based chitosan nanocomposite have attracted attention among other delivery technologies.
Methodology: MNPs were synthesised using the co-precipitation method.
Environ Sci Pollut Res Int
December 2024
Laboratório de Cerâmica Técnica (CerTec), Grupo de Biomateriais E Materiais Nanoestruturados, Programa de Pós-Graduação Em Ciência E Engenharia de Materiais (PPGCEM), Universidade Do Extremo Sul Catarinense, Criciúma, SC, CEP 88806-000, Brazil.
Magnetic composites (MC) prepared from magnetite nanoparticles (MNP) and activated carbon from bovine bone (AC) in different proportions (75/25, 50/50, and 25/75) were used as catalysts in the photo-Fenton process to degrade methylene blue (MB) in aqueous solution. The materials were prepared by the citrate-nitrate sol-gel synthesis method and used as catalysts in the photo-Fenton process. The photocatalytic tests were performed in a cylindrical reactor with a 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!