A newly designed heterogenized catalyst that incorporates silver(I) ions with 2-(dicyclohexylphosphaneyl)acetaldehyde (PCy aldehyde) into amino-functionalized chromium(III) terephthalate is developed. Silver(I) ions were robustly immobilized on the amino-functionalized chromium(III) terephthalate, which contains an imine bond formed by the reaction with PCy aldehyde. The Ag(I) ion is coordinated with the phosphine in the imine group to create MIL-101-AP(Ag). Characterizations were carefully carried out according to the synthetic steps. The catalytic performance of MIL-101-AP(Ag) was evaluated through the C-H carboxylation of thiophene-2-carbonitrile, achieving a 10 % yield with a turnover number of 1.0. The recyclability of the MIL-101-AP(Ag) catalyst was successfully demonstrated with five cycle, with no loss in activity and selectivity observed. This approach, which involves the formation of an imine bond to facilitate silver loading with phosphine on amino-functionalized MIL-101(Cr), exhibits significant potential for both CO fixation and C-H carboxylation, thereby highlighting the modified material's promise as a sustainable catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202400096DOI Listing

Publication Analysis

Top Keywords

silveri ions
12
amino-functionalized chromiumiii
12
chromiumiii terephthalate
12
c-h carboxylation
12
pcy aldehyde
8
imine bond
8
immobilization silveri
4
amino-functionalized
4
ions amino-functionalized
4
terephthalate organophosphine
4

Similar Publications

Antimicrobial Activity and Mode of Action of N-Heterocyclic Carbene Silver(I) Complexes.

Molecules

December 2024

Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano 49, 80131 Naples, Italy.

Silver drugs have played a vital role in human healthcare for the treatment of infections for many centuries. Currently, due to antibiotic resistance, a potential scenario or the application of silver complexes may arise as substitutes for conventional antibiotics. In this perspective, N-heterocyclic carbene (NHC) ligands have been selected as carrier molecules for silver ions.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.

Curr Top Med Chem

January 2025

Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.

View Article and Find Full Text PDF

A luminescent silver(I) complex containing a luminescent radical ligand was prepared for the first time. Coordination to Ag enhanced and red-shifted the radical-centered emission. This study demonstrates similar effects in the luminescence of the radical by complexation with group 11 d-metal ions.

View Article and Find Full Text PDF

Silver(I) ions (Ag) undergo selective π-complexation with olefins and have been employed as separation media for the isolation of olefins from structurally similar paraffins. Ionic liquids (ILs) possess minimal vapor pressures, exceptional thermal stabilities, low melting points, as well as provide a favorable environment for π-complexation between Ag ions and olefins. The development of molecular drivers capable of highly selective olefin/paraffin separation systems with Ag-containing ILs necessitates a comprehensive understanding of all factors that affect olefin solubility and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!