Introduction: Wiskott-Aldrich syndrome (WAS) is a rare X-linked inborn error of immunity characterized by microthrombocytopenia, infections, eczema, and increased predisposition to develop autoimmunity and malignancy. Flow cytometric assay for determining WAS protein (WASp) is a rapid and cost-effective tool for detecting patients. However, very few studies described WASp expression in female carriers. Most WAS carriers are clinically asymptomatic. Active screening of female family members helps identify female carriers, distinguish de novo mutations, and to select appropriate donor prior to curative stem cell transplantation. This study was undertaken to evaluate the diagnostic capability of flow cytometry-based WASp expression in peripheral blood cells to identify carriers and compare WASp expression in different blood cell lineages.
Patients And Methods: Female patients, heterozygous for WAS gene, were enrolled in this study conducted at Pediatric Allergy Immunology Unit, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India. Flow cytometric assessment of WASp expression in lymphocytes, monocytes, and neutrophils was carried out and compared with healthy control and affected patients. The results were expressed in delta (Δ) median fluorescence intensity (MFI) as well as stain index (SI), which is the ratio of ΔMFI of patient and ΔMFI of control.
Results: Thirteen mothers and two sisters of genetically confirmed WAS patients were enrolled in the study. All enrolled females were clinically asymptomatic and did not have microthrombocytopenia. Low WASp expression (SI < 1) was seen in lymphocytes and monocytes in 10 (66.6%) carriers. Females with variants in proximal exons (exons 1 and 2) were found to have lesser expression than those with distal (exons 3-12) variants.
Conclusion: Flow cytometry is a rapid, easily available, cost-effective tool for WASp estimation. Lymphocytes followed by monocytes are the best cell lineages for WASp estimation in carrier females. However, genetic testing remains the gold standard, as carrier females with variants in distal exons may have normal WASp expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pbc.30972 | DOI Listing |
Insect Mol Biol
December 2024
Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
Sex determination pathways regulate male and female-specific development and differentiation and offer potential targets for genetic pest management methods. Insect sex determination pathways are comprised of primary signals, relay genes and terminal genes. Primary signals of coleopteran, dipteran, hymenopteran and lepidopteran species are highly diverse and regulate the sex-specific splicing of relay genes based on the primary signal dosage, amino acid composition or the interaction with paternally inherited genes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
The parasitic wasp, Cotesia congregata, manipulates the behaviour of its host, the caterpillar Manduca sexta. The female wasp injects her eggs and a symbiotic virus (i.e.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003, Tyumen, Russia.
Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.
View Article and Find Full Text PDFPurpose: Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder characterized by distinctive features including microthrombocytopenia, eczema and recurrent infections. In the present study we report clinical, immunological and molecular spectrum of 41 WAS patients diagnosed over last five years.
Methods: Clinical and family history was collected from case records.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!