Computer-aided rational design strategy based on protein surface charge to improve the thermal stability of a novel esterase from Geobacillus jurassicus.

Biotechnol Lett

State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China.

Published: June 2024

Objectives: Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases.

Results: Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (Ds) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min).

Conclusion: Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-024-03473-4DOI Listing

Publication Analysis

Top Keywords

thermal stability
20
rational design
12
surface charge
12
esterase geobacillus
8
geobacillus jurassicus
8
thermostable esterase
8
gene gju768
8
thermal
5
stability
5
geobacillus
5

Similar Publications

Aquatic biota and human health are seriously threatened by the dramatic rise in antibiotics in environmental matrices. In this regard, the present study aims to improve knowledge of the combined effects of heterojunction design and defect engineering on the photocatalytic degradation of pharmaceuticals in aqueous matrices. Advantageously, the positioning of the valence band (VB) and conduction band (CB) levels of S@g-CN, being higher than those of BiMoO, demonstrates the feasibility of forming a type-II heterojunction between these materials.

View Article and Find Full Text PDF

Two artificial imidazole-derived nucleobases, HQIm (3H-imidazo[4,5-f]quinolin-5-ol) and CaIm (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions CoII, NiII and ZnII, as well as with the lanthanoid ions EuIII and SmIII, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.

View Article and Find Full Text PDF

Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.

View Article and Find Full Text PDF

The development of robust, efficient, and cost-effective heterogeneous photocatalysts for visible light-driven CO2 reduction continues to be a significant challenge in the quest for sustainable energy solutions. As a result, increasing attention is being directed towards the exploration of high-performance photocatalysts capable of converting CO2 into chemical feedstocks. Imidazolate Frameworks Potsdam (IFPs) can be a promising candidate for CO2 photoreduction due to their ease of synthesis, use of low-cost, earth-abundant metals, and high chemical and thermal stability.

View Article and Find Full Text PDF

() presents significant clinical challenges. This study evaluated the synergistic effects of a β-lactam and β-lactamase inhibitor combination against and explored the underlying mechanisms. Synergy was assessed through MIC tests and time-kill studies, and binding affinities of nine β-lactams and BLIs to eight target receptors (L,D-transpeptidases [LDT] 1-5, D,D-carboxypeptidase, penicillin-binding protein [PBP] B, and PBP-lipo) were assessed using mass spectrometry and kinetic studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!