Gaining the ability to fly actively was a ground-breaking moment in insect evolution, providing an unprecedented advantage over other arthropods. Nevertheless, active flight was a costly innovation, requiring the development of wings and flight muscles, the provision of sufficient energetic resources, and a complex flight control system. Although wings, flight muscles, and the energetic budget of insects have been intensively studied in the last decades, almost nothing is known regarding the flight-control devices of many crucial insect groups, especially beetles (Coleoptera). Here, we conducted a phylogenetic-informed analysis of flight-related mechanosensors in 28 species of bark beetles (Curculionidae: Scolytinae, Platypodinae), an economically and ecologically important group of insects characterized by striking differences in dispersal abilities. The results indicated that beetle flight apparatus is equipped with different functional types of mechanosensors, including strain- and flow-encoding sensilla. We found a strong effect of allometry on the number of mechanosensors, while no effect of relative wing size (a proxy of flight investment) was identified. Our study constitutes the first step to understanding the drivers and constraints of the evolution of flight-control devices in Coleoptera, including bark beetles. More research, including a quantitative neuroanatomical analysis of beetle wings, should be conducted in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961309 | PMC |
http://dx.doi.org/10.1038/s41598-024-57658-y | DOI Listing |
Plants (Basel)
December 2024
Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia.
A new nematode species, sp. n. is described in the bark beetle-elm tree association ( and var.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Forest Resource Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovak Republic.
Gap dynamics are driving many important processes in the development of temperate forest ecosystems. What remains largely unknown is how often the regeneration processes initialized by endogenous mortality of dominant and co-dominant canopy trees take place. We conducted a study in the high mountain forests of the Central Western Carpathians, naturally dominated by the Norway spruce.
View Article and Find Full Text PDFInsects
December 2024
Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.
The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.
View Article and Find Full Text PDFBull Math Biol
December 2024
Department of Biology, University of Victoria, Victoria, BC, Canada.
Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China. Electronic address:
Three Tomicus bark beetles (T. yunnanensis, T. brevipilosus and T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!