The environmental impact of biodegradable polylactic acid microplastics (PLA-MPs) has become a global concern, with documented effects on soil health, nutrient cycling, water retention, and crop growth. This study aimed to assess the repercussions of varying concentrations of PLA-MPs on rice, encompassing aspects such as growth, physiology, and biochemistry. Additionally, the investigation delved into the influence of PLA-MPs on soil bacterial composition and soil enzyme activities. The results illustrated that the highest levels of PLA-MPs (2.5%) impaired the photosynthesis activity of rice plants and hampered plant growth. Plants exposed to the highest concentration of PLA-MPs (2.5%) displayed a significant reduction of 51.3% and 47.7% in their root and shoot dry weights, as well as a reduction of 53% and 49% in chlorophyll a and b contents, respectively. The activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in rice leaves increased by 3.1, 2.8, 3.5, and 5.2 folds, respectively, with the highest level of PLA-MPs (2.5%). Soil enzyme activities, such as CAT, urease, and dehydrogenase (DHA) increased by 19.2%, 10.4%, and 22.5%, respectively, in response to the highest level of PLA-MPs (2.5%) application. In addition, PLA-MPs (2.5%) resulted in a remarkable increase in the relative abundance of soil Proteobacteria, Nitrospirae, and Firmicutes by 60%, 31%, and 98.2%, respectively. These findings highlight the potential adverse effects of PLA-MPs on crops and soils. This study provides valuable insights into soil-rice interactions, environmental risks, and biodegradable plastic regulation, underscoring the need for further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141771 | DOI Listing |
Sci Total Environ
December 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States. Electronic address:
Sci Total Environ
December 2024
Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea. Electronic address:
Microplastics (MPs) pollution has recently become a major concern for agroecosystems. The interplay between MPs, and heavy metal(loid)s in the soil can intensify the risks to plant growth and human health. The current study investigated the interactive effects of arsenic (As) and biodegradable and petroleum-based conventional MPs on rice growth, As bioavailability, soil bacterial communities, and soil enzyme activities.
View Article and Find Full Text PDFEcotoxicology
December 2024
Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
The widespread presence of microplastics (MPs) in aquatic ecosystems has raised growing concerns among ecotoxicologists regarding their potential toxicity. This study explored the impacts of polylactic acid (PLA) MPs on the physiology and health of freshwater fish, Cirrhinus mrigala, by dietary exposure for 90 days. The experiment consisted of six groups: five treatment groups (0.
View Article and Find Full Text PDFEnviron Geochem Health
August 2024
Mountain Area Research Institute, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
Sci Total Environ
November 2024
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Biochemical Technology R&D center, Ming Chi University of Technology, New Taipei City 24301, Taiwan. Electronic address:
This study extensively explored the adsorption behavior of heavy metals (Pb, Ni, Cu, Zn, and Cd) onto microplastics (MPs). The particle sizes of MPs ranged from 0.149 to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!