Resting-state Functional Connectivity of the Motor and Cognitive Areas is Preserved in Masters Athletes.

Neuroscience

Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada; Integrated Program in Neuroscience (IPN), McGill University, 1033 Pine Ave, Montreal, Quebec, Canada. Electronic address:

Published: May 2024

Aging is characterized by a decline in physical and cognitive functions, often resulting in decreased quality of life. Physical activity has been suggested to potentially slow down various aspects of the aging process, a theory that has been supported by studies of Masters Athletes (MA). For example, MA usually have better cognitive and physical functions than age-matched sedentary and healthy older adults (OA), making them a valuable model to gain insights into mechanisms that promote physical and cognitive function with aging. The purpose of this study was to identify differences in resting-state functional connectivity (rs-FC) of motor and cognitive regions between MA and OA and determine if these differences in the resting brain are associated with differences in cognitive and physical performance between groups. Fifteen MA (9 males) and 12 age-matched OA (six males) were included. rs-FC images were compared to identify significant between-groups differences in brain connectivity. There was higher connectivity between the cognitive and motor networks for the OA group, whereas the MA group had stronger connectivity between different regions within the same network, both for the cognitive and the motor networks. These results are in line with the literature suggesting that aging reduces the segregation between functional networks and causes regions within the same network to be less strongly connected. High-level physical activity practiced by the MA most likely contributes to attenuating aging-related changes in brain functional connectivity, preserving clearer boundaries between different functional networks, which may ultimately favor maintenance of efficient cognitive and sensorimotor processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2024.03.024DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
cognitive
9
resting-state functional
8
motor cognitive
8
masters athletes
8
physical cognitive
8
physical activity
8
cognitive physical
8
cognitive motor
8
motor networks
8

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

In this work, we investigate the dynamics of a discrete-time prey-predator model considering a prey reproductive response as a function of the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of growth parameters.

View Article and Find Full Text PDF

Peer support services for people living with HIV (PLHIV) serve varying functions and are a unique resource for support. Peer support programs are considered an important strategy for achieving better quality of life (QoL) for PLHIV and there has been substantial investment in provision of such programs. The present study asks whether being connected to other PLHIV is associated with better QoL for PLHIV in Australia and; whether involvement in formal peer support programs is associated with QoL among people newly diagnosed with HIV.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

PbOI: A Lead Oxyhalide IR Optical Crystal with an Unprecedented [OPb] Chain Featuring a Wide Transmittance Range and Large Birefringence.

Inorg Chem

January 2025

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, and Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, P. R. China.

Among the infrared (IR) optical material systems, the heavy-metal oxyhalide system has become an emerging system in recent years. Introducing heavy-metal cations and halogen anions with large atomic numbers is conducive to widening the IR transparency window and improving the birefringence value. Our experiments focus on the PbO-PbI system and find a new lead oxyhalide, PbOI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!