At the Royal Society meeting in 2023, we have mainly presented our lunar orbit array concept called DSL, and also briefly introduced a concept of a lunar surface array, LARAF. As the DSL concept had been presented before, in this article, we introduce the LARAF. We propose to build an array in the far side of the Moon, with a master station which handles the data collection and processing, and 20 stations with maximum baseline of 10 km. Each station consists of 12 membrane antenna units, and the stations are connected to the master station by power line and optical fibre. The array will make interferometric observation in the 0.1-50 MHz band during the lunar night, powered by regenerated fuel cells. The whole array can be carried to the lunar surface with a heavy rocket mission, and deployed with a rover in eight months. Such an array would be an important step in the long-term development of lunar-based ultralong wavelength radio astronomy. It has a sufficiently high sensitivity to observe many radio sources in the sky, though still short of the dark age fluctuations. We discuss the possible options in the power supply, data communication, deployment etc. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2023.0094 | DOI Listing |
Exp Astron (Dordr)
January 2025
Institute of Space Sciences and Astronomy, University of Malta, Msida, Malta.
We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach.
View Article and Find Full Text PDFSci Adv
January 2025
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Long-period radio transients are a new class of astrophysical objects that exhibit periodic radio emission on timescales of tens of minutes. Their true nature remains unknown; possibilities include magnetic white dwarfs, binary systems, or long-period magnetars; the latter class is predicted to produce fast radio bursts (FRBs). Using the MeerKAT radio telescope, we conducted follow-up observations of the long-period radio transient GPM J1839-10.
View Article and Find Full Text PDFNature
January 2025
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
Nature
January 2025
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
Med Phys
December 2024
Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in oncology (NCRO), Heidelberg, Germany.
Background: Carbon-ion radiotherapy provides steep dose gradients that allow the simultaneous application of high tumor doses as well as the sparing of healthy tissue and radio-sensitive organs. However, even small anatomical changes may have a severe impact on the dose distribution because of the finite range of ion beams.
Purpose: An in-vivo monitoring method based on secondary-ion emission could potentially provide feedback about the patient anatomy and thus the treatment quality.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!