Childhood engagement in cognitively stimulating activities moderates relationships between brain structure and cognitive function in adulthood.

Neurobiol Aging

Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY, United States; Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States. Electronic address:

Published: June 2024

Greater engagement in cognitively stimulating activities (CSA) during adulthood has been shown to protect against neurocognitive decline, but no studies have investigated whether CSA during childhood protects against effects of brain changes on cognition later in life. The current study tested the moderating role of childhood CSA in the relationships between brain structure and cognitive performance during adulthood. At baseline (N=250) and 5-year follow-up (N=204) healthy adults aged 20-80 underwent MRI to assess four structural brain measures and completed neuropsychological tests to measure three cognitive domains. Participants were categorized into low and high childhood CSA based on self-report questionnaires. Results of multivariable linear regressions analyzing interactions between CSA, brain structure, and cognition showed that higher childhood CSA was associated with a weaker relationship between cortical thickness and memory at baseline, and attenuated the effects of change in cortical thickness and brain volume on decline in processing speed over time. These findings suggest higher CSA during childhood may mitigate the effects of brain structure changes on cognitive function later in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363693PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2024.02.010DOI Listing

Publication Analysis

Top Keywords

brain structure
16
childhood csa
12
engagement cognitively
8
cognitively stimulating
8
stimulating activities
8
relationships brain
8
structure cognitive
8
cognitive function
8
csa childhood
8
effects brain
8

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.

Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!