Ubrogepant is the first oral calcitonin gene-related peptide (CGRP) receptor antagonist which is used for the acute treatment of migraine in adults. The present study employs liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance spectroscopy (NMR) techniques for the identification and characterization of degradation impurities of ubrogepant. The forced degradation study of ubrogepant was performed as per the International Council for Harmonisation (ICH) Q1A and Q1B guidelines. The in silico degradation profile of ubrogepant was predicted by Zeneth. It was observed that ubrogepant was labile to acidic hydrolysis, basic hydrolysis, and oxidative degradation conditions (HO), although it was stable in neutral hydrolysis and photolytic (UV light and visible light) conditions. Eight degradation impurities were formed, which were separated on reversed-phase HPLC with a gradient program on an InertSustain C8 column (4.6 × 250 mm, 5 µm) using 10 mM ammonium formate (pH unadjusted) and acetonitrile as the mobile phase. The structures of all the degradation impurities were characterized using the exact masses obtained from the HRMS/MS. Further, NMR studies were conducted on two major degradation impurities (UB-4 and UB-7). A plausible mechanism was proposed to support the structures of all the degradation impurities of UBR. In silico toxicity and mutagenicity assessment were done by DEREK Nexus, SARAH Nexus, and ProTox-II.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116117DOI Listing

Publication Analysis

Top Keywords

degradation impurities
24
degradation
10
nmr studies
8
characterization degradation
8
impurities ubrogepant
8
structures degradation
8
impurities
6
ubrogepant
6
lc-hrms nmr
4
studies characterization
4

Similar Publications

A simple LC method has been developed and validated for estimating budesonide (epimer B + A) and formoterol fumarate dihydrate in dry powder inhalation. The development results of this study make it very significant. The degradation and process impurities in EP and ChP were identified in addition to budesonide and formoterol fumarate.

View Article and Find Full Text PDF

Background: Radiochemical purity is a key criterion for the quality of radiopharmaceuticals used in clinical practice. The joint improvement of analytical methods capable of identifying related radiochemical impurities and determining the actual radiochemical purity, as well as the improvement of synthesis methods to minimize the formation of possible radiochemical impurities, is integral to the implementation of high-tech nuclear medicine procedures. PSMA-targeted radionuclide therapy with lutetium-177 has emerged as an effective treatment option for prostate cancer, and [Lu]Lu-PSMA-617 and [Lu]Lu-PSMA have achieved global recognition as viable radiopharmaceuticals.

View Article and Find Full Text PDF

In recent times, a truly exquisite pharmaceutical marvel has graced the world of medicine, known as Safinamide (SAF). This opulent creation has been specifically tailored to cater to the needs of individuals afflicted with Parkinson's disease (PD), an esteemed neurological condition renowned for its regal ability to impede motor skills, coordination, and equilibrium. It is highly improbable that degradation products of pharmaceutical components would significantly compromise efficiency and safety of a drug during its shelf life.

View Article and Find Full Text PDF

Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.

View Article and Find Full Text PDF

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!