Photochemical transformation and immobilization of thallium in the presence of iron and arsenic: Mechanistic insights from the coupled formation of arsenate complexes.

J Hazard Mater

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Published: May 2024

Despite the occurrence of thallium (Tl) in the acidic mining-affected areas being highly positively correlated with iron (Fe) and arsenic (As), the effects of the two accompanying elements on Tl redox transformation and immobilization remain largely unknown. Here, we investigated the photochemical redox kinetics and immobilization efficiency of Tl for a wide range of As/Fe and As/Tl ratios under acidic conditions. We provided the first experimental confirmation of the complexation of Tl(III) with As(V) by the spectrophotometric method and revealed the role of Tl(III)-As(V) complexes in decreasing the photoreduction rate of Tl(III) under sunlight. Additionally, the negative impact of colloidal Fe(III)-As(V) and Fe(III)-As(III) complexes formation on decreasing photoactive Fe(III) speciation and thus the apparent quantum yield of •OH was highlighted, which consequently hindered the oxidative conversion of Tl(I) to Tl(III). We rationalize the kinetics results by developing the model which quantitatively describes the photochemistry of Tl. Furthermore, we demonstrated the colloid-facilitated immobilization of Tl(III) through the formation of Tl(III)-As(V) clusters and surface adsorption onto the complexes. This study broadens the mechanistic understanding of redox transformation and immobilization potential of Tl and aids in assessing Tl speciation as well as its coupled transformation with Fe and As species in the sunlit water environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134081DOI Listing

Publication Analysis

Top Keywords

transformation immobilization
12
iron arsenic
8
redox transformation
8
immobilization
5
photochemical transformation
4
immobilization thallium
4
thallium presence
4
presence iron
4
arsenic mechanistic
4
mechanistic insights
4

Similar Publications

Article Synopsis
  • Rapid industrialization has contaminated soils with heavy metals, leading to environmental and health hazards, and using remediated soil in sintered bricks is a promising solution.
  • The study analyzed heavy metal distribution within the kiln and between brick layers, revealing that while most metals were immobilized effectively during sintering, selenium showed notable volatility with lower retention.
  • Results indicated that the outer layer of bricks had higher concentrations of arsenic and lead, with inner layers exhibiting lower leaching rates for certain metals, emphasizing the complex behaviors of heavy metals in the brick-making process and supporting the potential for safer reuse of contaminated soils.
View Article and Find Full Text PDF

Forming defect sites on catalyst supports and immobilizing precious metal atoms at these sites offers an efficient approach for preparing single-atom catalysts. In this study, we employed an Fe-Ce oxide solid solution (FC), which has surface oxygen that reduces more readily than that of ceria, to anchor Rh single atoms (Rh1). When utilized in the selective catalytic reduction of NO with CO (CO-SCR), Rh1/FC reduced at 500 °C- characterized by less oxidic Rh state induced by an oxygen-deficient coordination-exhibited superior activity and durability compared to Rh1/ceria and Rh1/FC reduced at 300 °C.

View Article and Find Full Text PDF

Recent Progress on the Catalytic Application of Bimetallic PdCu Nanoparticles.

Molecules

December 2024

Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.

Bimetallic PdCu nanoparticles with different Pd:Cu ratios and morphologies can be synthesized and immobilized on a variety of support materials. Accordingly, PdCu nanoparticles can be efficiently applied as heterogeneous catalysts in a large number of organic transformations including C-C coupling and cross-coupling reactions. As related to their favorable electronic and structural interactions, the catalytic performances of PdCu bimetallic nanoparticles may be superior to monometallic species.

View Article and Find Full Text PDF

Composite materials based on diatomite (DT) with the addition of biochar (BC), dolomite (DL), and bentonite (BN) were developed. The effect of chemical modification on the chemical structure of the resulting composites was investigated, and their influence on heavy metal immobilization and the ecotoxicity of post-flotation sediments was evaluated. It was demonstrated that the chemical modifications resulted in notable alterations to the chemical properties of the composites compared to pure DT and mixtures of DT with BC, DL, and BN.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!