The evolution and formation of centromeric repeats analysis in Vitis vinifera.

Planta

Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China.

Published: March 2024

Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-024-04374-6DOI Listing

Publication Analysis

Top Keywords

centromeric
9
centromeric repeats
8
vitis vinifera
8
repeat sequences
8
centromeric regions
8
sequences
7
evolution formation
4
formation centromeric
4
repeats analysis
4
analysis vitis
4

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Cytogenomics of (Hymenoptera: Apidae) and the Sharing of a Satellite DNA Family in Several Neotropical Meliponini Genera.

Genes (Basel)

January 2025

Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa 36570-900, Minas Gerais, Brazil.

Background/objectives: A striking feature of the karyotypes of stingless bees is the large amount of heterochromatin present in most species. Cytogenomic studies performed in some Meliponini species have suggested that evolutionary events related to the diversification and amplification of satellite DNA families in the heterochromatin may reflect the structuring of phylogenetic clades in this tribe. In this study, we performed a genomic analysis in to characterize different satDNA families in its genome.

View Article and Find Full Text PDF

Background/objectives: Systemic autoimmune rheumatic diseases (SARDs) pose diagnostic challenges, particularly in pediatric populations, due to their diverse presentations and overlapping symptoms. This study aimed to evaluate the diagnostic concordance between indirect immunofluorescence (IIF) at different dilution levels (1/80 and 1/640) and immunoblot findings for anti-centromere antibody (ACA) positivity. Additionally, the clinical significance of ACA positivity and its association with SARDs in pediatric patients was assessed.

View Article and Find Full Text PDF

The intraspecies and interspecies Comparative Genomic Hybridization (CGH) between the closely related Cebidae species, capuchin monkeys (, ), and the tamarins () was performed to analyze their genomes. In particular, this approach determines balanced and unbalanced repetitive DNA sequence distribution and reveals dynamics during evolution. Capuchin monkeys are considered the most ancestral group with conserved syntenies compared to the hypothetical ancestral New World monkeys' karyotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!