In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden. Herein, we performed a high throughput virtual screening against KDM6B and ASH1L using > 53,000 compounds that were obtained from the Maybridge library and PubChem Database, followed by molecular docking to evaluate their docking score/Glide Gscore. Based on their docking scores, the selected inhibitors were later assessed for their in vitro anti-leishmanial efficacy. Out of all inhibitors designed against KDM6B and ASH1L, HTS09796, GSK-J4 and AS-99 particularly showed promising in vitro activity with IC < 5 µM against both extracellular promastigote and intracellular amastigote forms of L. donovani. In vitro drug interaction studies of these inhibitors further demonstrated their synergistic interaction with amphotericin-B and miltefosine. However, GSK-J4 makes an exception by displaying an in different mode of interaction with miltefosine. Collectively, our in silico and in vitro studies acted as a platform to identify the applicability of these inhibitors targeted against KDM6B and ASH1L for anti-leishmanial therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-024-10824-w | DOI Listing |
Mol Divers
December 2024
Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden.
View Article and Find Full Text PDFFront Genet
January 2024
Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden.
This study assessed the diagnostic yield of high-throughput sequencing methods in a cohort of craniosynostosis (CS) patients not presenting causal variants identified through previous targeted analysis. Whole-genome or whole-exome sequencing (WGS/WES) was performed in a cohort of 59 patients (from 57 families) assessed by retrospective phenotyping as having syndromic or nonsyndromic CS. A syndromic form was identified in 51% of the unrelated cases.
View Article and Find Full Text PDFJ Immunol
May 2020
Division of Molecular Parasitology and Immunology, Council of Scientific and Industrial Research-Central Drug Research Institute, Lucknow 226031, India; and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
Reciprocal changes in histone lysine methylation/demethylation of M(LPS + IFN-γ)/M(IL-10) genes is one of the factors that direct macrophage polarization and contribute to host defense/susceptibility toward infection. Although, histone lysine methyltransferases and lysine demethylases orchestrate these events, their role remains elusive in visceral leishmaniasis, a disease associated with macrophage M(IL-10) polarization. In this study, we observed that induced the expression of histone lysine methyltransferases Ash1l, Smyd2, and Ezh2 and histone lysine demethylases Kdm5b and Kdm6b in J774 macrophages and BALB/c mice.
View Article and Find Full Text PDFGene
March 2019
Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
Histone modifications such as methylation of key lysine residues play an important role in embryonic development in a variety of organisms such as of Pacific oysters, zebrafish and mice. The action of demethylase ("erasers") and methyltransferase ("writers") enzymes regulates precisely the methylation status of each lysine residue. However, despite fishes being very useful model organisms in medicine, evolution and ecotoxicology, most studies have focused on mammalian and plant model organisms, and mechanisms underlying regulation of histones are unknown in fish development outside of zebrafish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!