Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications.

Adv Mater

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.

Published: June 2024

Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202401002DOI Listing

Publication Analysis

Top Keywords

luminescent mechanism
12
luminescent properties
12
metal nanoclusters
8
basic parameters
8
parameters methods
8
luminescent
8
characterization methods
8
mncs
6
properties
5
photoluminescent
4

Similar Publications

Structural relaxation chirality transfer enhanced circularly polarized luminescence in heteronuclear Ce-Mn complexes.

Mater Horiz

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Circularly polarized luminescence (CPL) materials have developed rapidly in recent years due to their wide application prospects in fields like 3D displays and anti-counterfeiting. Utilizing energy transfer processes to transfer chirality has been proven as an efficient way to obtain CPL materials. However, the physics behind energy-transfer induced CPL is still not clear.

View Article and Find Full Text PDF

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications.

View Article and Find Full Text PDF

Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.

J Colloid Interface Sci

January 2025

Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:

Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!