Radiation-induced renal fibrosis (RIRF) is a progressive, irreversible condition causing chronic kidney disease. Pentoxifylline (PTX) and vitamin E may mitigate radiation-induced damage and fibrosis. This study assesses their effectiveness. We used four groups, each with six rats: radiation therapy alone (RT-only), radiation therapy plus drug treatment (RT + drug), drug treatment alone (drug-only), and a control group. Rats were monitored for three months, with weight measurements every four weeks. Afterward, rats were analyzed biochemically and histologically, with blood and tissue samples taken for statistical comparison. No significant differences in serum creatinine levels and body weight were observed. RT-only group had more severe kidney tubule effects. Histomorphological, immunohistochemical, and TUNEL analyses showed significant RIRF mitigation in the RT + drug group. Our study highlighted molecular pathways (SMAD, TGF-beta, VEGF) and histological markers (collagens, a-SMA, fibronectin, metalloproteinases) associated with RIRF. PTX and vitamin E reduced ionizing radiation's impact on renal cells and mitigated radiation-induced kidney fibrosis. Further human studies are needed to confirm these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960827PMC
http://dx.doi.org/10.1038/s41598-024-57850-0DOI Listing

Publication Analysis

Top Keywords

radiation-induced renal
8
renal fibrosis
8
ptx vitamin
8
radiation therapy
8
drug treatment
8
evaluation therapeutic
4
therapeutic combination
4
combination pentoxifylline
4
pentoxifylline vitamin
4
radiation-induced
4

Similar Publications

Radiation therapy is crucial for cancer treatment, but it often causes tissue damage. The kidney, which is sensitive to radiation, is under-researched in this context. This study aimed to develop a mouse model for radiation-induced acute kidney injury (AKI) using a small animal radiation research platform (SARRP) to mimic clinical radiation conditions.

View Article and Find Full Text PDF

Advancements in radiotherapy technology now enable the delivery of ablative doses to targets in the upper urinary tract, including primary renal cell carcinoma (RCC) or upper tract urothelial carcinomas (UTUC), and secondary involvement by other histologies. Magnetic resonance imaging-guided linear accelerators (MR-Linacs) have shown promise to further improve the precision and adaptability of stereotactic body radiotherapy (SBRT). This single-institution retrospective study analyzed 34 patients (31 with upper urinary tract non-metastatic primaries [RCC or UTUC] and 3 with metastases of non-genitourinary histology) who received SBRT from August 2020 through September 2024 using a 1.

View Article and Find Full Text PDF

Radiation-induced nephrotoxicity: Role of SMPDL3b.

Int J Radiat Oncol Biol Phys

December 2024

Department of Radiation Oncology, University of Miami, Sylvester Comprehensive Cancer Center/ Miller School of Medicine, Miami, FL, USA; Department of Radiation Oncology, University of Rochester, 601 Elmwood Ave. Box 647 Rochester, NY, USA. Electronic address:

Background: Radiation nephropathy (RN) can be a significant late complication after radiotherapy for abdominal and paraspinal tumors. The mechanisms for the development of RN are thought to involve disruption of podocyte function, leading to podocyte cell death and, finally, impaired renal function. This study investigated the mechanistic role of SMPDL3b in regulating podocyte injury and renal function after irradiation.

View Article and Find Full Text PDF

Schimke immuno-osseous dysplasia is a rare multisystemic disorder caused by biallelic loss of function of the SMARCAL1 gene that plays a pivotal role in replication fork stabilization and thus DNA repair. Individuals affected from this disease suffer from disproportionate growth failure, steroid resistant nephrotic syndrome leading to renal failure and primary immunodeficiency mediated by T cell lymphopenia. With infectious complications being the leading cause of death in this disease, researching the nature of the immunodeficiency is crucial, particularly as the state is exacerbated by loss of antibodies due to nephrotic syndrome or immunosuppressive treatment.

View Article and Find Full Text PDF

Effects of Recombinant α-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to Lu-Octreotate.

Int J Mol Sci

July 2024

Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.

Recombinant α-microglobulin (A1M) is proposed as a protector during Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after Lu-octreotate and/or A1M administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!