The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn's disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960840 | PMC |
http://dx.doi.org/10.1038/s41467-024-46825-4 | DOI Listing |
Anal Bioanal Chem
December 2024
Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, Sacramento, CA, USA.
Metabolically active cells emit volatile organic compounds (VOCs) that can be used in real time to non-invasively monitor the health of cell cultures. We utilized these naturally occurring VOCs in an adapted culture method to detect differences in culturing Chinese hamster ovary (CHO) cells with and without Staphylococcus epidermidis and Aspergillus fumigatus contaminations. The VOC emissions from the cell cultures were extracted and measured from the culture flask headspace using polydimethylsiloxane (PDMS)-coated Twisters, which were subjected to thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2, West Yuan-Ming-Yuan Road, Beijing, 100193, China.
Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil.
View Article and Find Full Text PDFJAMA Ophthalmol
December 2024
Second Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece.
Importance: Commercial mydriatics administered in preterm infants during retinopathy of prematurity (ROP) screening have been associated with various cardiorespiratory and gastrointestinal adverse events.
Objective: To examine whether microdrops of a combined mixture of 1.67% phenylephrine and 0.
Nat Prod Res
December 2024
National Institute of Agronomic Research of Algeria, Station of Sidi Mehdi, Touggourt, Algeria.
Mushrooms have proven to be a valuable source of diverse bioactive compounds that can hold substantial potential for preventing and managing various diseases. This research focused on examining the numerous bioactive compounds found in () (Cooke & Massee) Priest mushrooms, particularly those obtained from ethyl acetate and dichloromethane extracts. Polyphenols, flavonoids, tannins, and alkaloids were also evaluated by chemical analysis.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!