AI Article Synopsis

  • The study aimed to evaluate the effectiveness and quality of accelerated brain diffusion-weighted imaging (DWI) using deep learning technologies.
  • 85 patients underwent MRI, where different imaging techniques were compared, including conventional and those enhanced by deep learning, with experienced reviewers assessing the results.
  • The findings indicated that deep learning DWI markedly improved image quality and diagnostic confidence over traditional methods, making ultra-fast brain imaging feasible and more effective.

Article Abstract

Objectives: To investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DWI) with deep learning image reconstruction and super resolution.

Methods: 85 consecutive patients with clinically indicated MRI at a 3 T scanner were prospectively included. Conventional diffusion-weighted data (c-DWI) with four averages were obtained. Reconstructions of one and two averages, as well as deep learning diffusion-weighted imaging (DL-DWI), were accomplished. Three experienced readers evaluated the acquired data using a 5-point Likert scale regarding overall image quality, overall contrast, diagnostic confidence, occurrence of artefacts and evaluation of the central region, basal ganglia, brainstem, and cerebellum. To assess interrater agreement, Fleiss' kappa (ϰ) was determined. Signal intensity (SI) levels for basal ganglia and the central region were estimated via automated segmentation, and SI values of detected pathologies were measured.

Results: Intracranial pathologies were identified in 35 patients. DL-DWI was significantly superior for all defined parameters, independently from applied averages (p-value <0.001). Optimum image quality was achieved with DL-DWI by utilizing a single average (p-value <0.001), demonstrating very good (80.9%) to excellent image quality (14.5%) in nearly all cases, compared to 12.5% with very good and 0% with excellent image quality for c-MRI (p-value <0.001). Comparable results could be shown for diagnostic confidence. Inter-rater Fleiss' Kappa demonstrated moderate to substantial agreement for virtually all defined parameters, with good accordance, particularly for the assessment of pathologies (p = 0.74). Regarding SI values, no significant difference was found.

Conclusion: Ultra-fast diffusion-weighted imaging with super resolution is feasible, resulting in highly accelerated brain imaging while increasing diagnostic image quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.02.049DOI Listing

Publication Analysis

Top Keywords

deep learning
8
accelerated brain
8
brain diffusion-weighted
8
image quality
8
central region
8
basal ganglia
8
learning accelerated
4
diffusion-weighted mri
4
mri super
4
super resolution
4

Similar Publications

The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.

View Article and Find Full Text PDF

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC Cancer

January 2025

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.

View Article and Find Full Text PDF

This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.

View Article and Find Full Text PDF

To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.

View Article and Find Full Text PDF

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!