The successful application of gradient boosting regression (GBR) in machine learning to forecast surface area, pore volume, and yield in biomass-derived activated carbon (AC) production underscores its potential for enhancing manufacturing processes. The GBR model, collecting 17 independent variables for two-step activation (2-SA) and 14 for one-step activation (1-SA), demonstrates effectiveness across three datasets-1-SA, 2-SA, and a combined dataset. Notably, in 1-SA, the GBR model yields R values of 0.76, 0.90, and 0.83 for TPV, yield, and SSA respectively, and records R of 0.90 and 0.91 for yield in 2-SA and combined datasets. The model highlights the significance of the soaking procedure alongside activation temperature in shaping AC properties with 1-SA or 2-SA, illustrating machine learning's potential in optimizing AC production processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130624DOI Listing

Publication Analysis

Top Keywords

machine learning
8
activated carbon
8
gbr model
8
2-sa combined
8
learning application
4
application predicting
4
predicting key
4
key properties
4
properties activated
4
carbon produced
4

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!