Background: Relapsing-remitting multiple sclerosis (RRMS), a common demyelinating disease among young adults, follows a benign course in 10-15% of cases, where patients experience minimal neurological disability for a decade following disease onset. However, there is potential for these benign cases to transition into a clinically active, relapsing state.

Objective: To elucidate the biological mechanisms underlying the transition from benign to active RRMS using gene expression analysis.

Methods: We employed complementary-DNA microarrays to examine peripheral-blood gene expression patterns in patients with benign MS, defined as having a disease duration exceeding 10 years and an Expanded Disability Status Scale (EDSS) score of ≤3.0. We compared the gene expression pattern between patients who switched to active disease (Switching BMS) with those who maintained a benign state (Permanent-BMS) during an additional 5-year follow-up.

Results: We identified two primary mechanisms linked to the transition from benign MS to clinically active disease. The first involves the suppression of regulatory T cell activity, and the second pertains to the dysfunction of nuclear receptor 4 A family-dependent apoptosis. These mechanisms collectively contribute to an augmented autoimmune response and increased disease activity.

Conclusions: The intricate gene regulatory networks that operate in switching-BMS are related to suppression of immune tolerance and aberrant apoptosis. These findings may lead to new therapeutic targets to prevent the escalation to active disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2024.106475DOI Listing

Publication Analysis

Top Keywords

gene expression
12
active disease
12
benign active
8
relapsing-remitting multiple
8
multiple sclerosis
8
regulatory cell
8
clinically active
8
transition benign
8
benign
7
disease
7

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!