AI Article Synopsis

  • Water-soluble vitamins are crucial for the nervous system, and their deficiencies can lead to serious, irreversible complications if left untreated; this study aimed to highlight the clinical and laboratory findings related to these deficiencies for better early diagnosis and treatment.* -
  • Between 1998 and 2023, data from patients with neurological symptoms attributed to vitamin deficiencies were analyzed, revealing specific clinical presentations and neuroimaging results for various vitamin deficiencies, such as B1, B2, B12, and C.* -
  • The study concluded that acquired vitamin deficiencies can produce symptoms that resemble inherited metabolic disorders and emphasized the need for prompt diagnosis and treatment to prevent long-term consequences.*

Article Abstract

Background And Aims: Water-soluble vitamins play an essential coenzyme role in the nervous system. Acquired vitamin deficiencies are easily treatable, however, without treatment, they can lead to irreversible complications. This study aimed to provide clinical, laboratory parameters and neuroimaging data on vitamin deficiencies in an attempt to facilitate early diagnosis and prompt supplementation.

Methods: From July 1998 to July 2023, patients at Necker-Enfants-Malades Hospital presenting with acute neurological symptoms attributed to acquired vitamin deficiency were included. Clinical data were extracted from Dr Warehouse database. Neuroimaging, biochemical and electrophysiological data were reviewed.

Results: Patients with vitamin B1 deficiency exhibited abnormal eye movements (n = 4/4), fluctuations in consciousness (n = 3/4), and ataxia (n = 3/4). Brain MRI showed alterations of fourth ventricle region (n = 4/4), periaqueductal region (n = 4/4), tectum (n = 3/4), and median thalami (n = 3/4). Patients with vitamin B2 deficiency presented with early onset hypotonia (n = 3/4), hyperlactatemia (n = 4/4), and hyperammonemia (n = 4/4). Plasma acylcarnitines revealed a multiple acyl-coA dehydrogenase deficiency-like profile (n = 4/4). In vitamin B12 deficiency, young children presented with developmental delay (n = 7/7) and older children with proprioceptive ataxia (n = 3/3). Brain MRI revealed atrophy (n = 7/7) and spinal MRI hyperintensity in posterior cervical columns (n = 3/3). Metabolic findings showed elevated methylmalonic acid (n = 6/7) and hyperhomocysteinemia (n = 6/7). Patients with vitamin C deficiency exhibited gait disturbances and muscle weakness (n = 2/2).

Conclusions: Acquired vitamin deficiencies may display reversible clinical symptoms mimicking inherited metabolic disorders. Some situations raise suspicion for diagnosis: concordant clinical presentation, suggestive neuroimaging findings, and/or biochemical evidence. Any acute neurological condition should be treated without waiting for definitive biochemical confirmation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2024.02.013DOI Listing

Publication Analysis

Top Keywords

vitamin deficiencies
16
vitamin deficiency
16
acquired vitamin
12
patients vitamin
12
vitamin
9
neuroimaging findings
8
acute neurological
8
deficiency exhibited
8
brain mri
8
region n = 4/4
8

Similar Publications

Background: Vitamin D is thought to play a role in the development of migraine, but the nature of the relationship is still not fully understood. Although some studies have shown an association between vitamin D deficiency and migraine, other studies have had inconsistent or inconclusive results. Therefore, further research is needed to better understand the relationship between vitamin D and migraine headaches.

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.

Background: Diagnosis of Alzheimer's disease (AD) via MRI is costly and can be limited by regional availability. With the recent advancements and discovery of amyloid in the retina, diagnosis of AD and the effect of AD pathology on the retina is becoming well characterized. However, the prevalence of vascular contributions to cognitive impairment and dementia (VCID) and its effects on the retina are less well known.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Brain endothelial cell (EC) stress, including that induced by vascular amyloid β (Aβ) deposits in cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD), contributes to cerebral blood flow impairment, blood brain barrier (BBB) damage, neurovascular unit dysfunction, microhemorrhages and hypoperfusion, precipitating neurodegeneration and neuroinflammation processes. Epidemiological and experimental evidence suggests that hyperhomocysteinemia (Hhcy) contributes to increasing AD risk as well as CAA pathology. However, the cellular and molecular mechanisms through which Aβ and Hhcy drive EC and BBB dysfunction, whether the molecular effects of these challenges are additive or independent, and possible therapeutic strategies, remain to be determined.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Over the years, Alzheimer's Disease (AD) has been identified as a multifactorial disease, with cerebral vascular dysfunction being one of the most common and early pathological features. Vascular risk factors (VRF) are thought to further increase AD risk and pathology. Cerebral Amyloid Angiopathy (CAA) is defined as the accumulation of amyloid-beta (Aβ) on the vascular wall.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!