Background: XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure.

Methods: In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins.

Results: It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance.

Conclusion: In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-09347-2DOI Listing

Publication Analysis

Top Keywords

xaf1 overexpression
20
cisplatin resistance
12
cell cycle
12
xaf1
9
cell
9
nsclc
8
resistance nsclc
8
endoplasmic reticulum
8
nsclc cell
8
cell lines
8

Similar Publications

Background: XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure.

Methods: In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot.

View Article and Find Full Text PDF

X-linked inhibitor of apoptosis protein (XIAP) -associated factor 1 (XAF1) is an interferon-stimulated gene which exhibits pro-apoptosis effect. In this study, XAF1 was characterized from grass carp Ctenopharyngodon idella and its expression pattern and function were analyzed. The open reading frame (orf) of XAF1 is 789 nucleotides (nt) encoding 262 amino acids.

View Article and Find Full Text PDF

IFI44L as a novel epigenetic silencing tumor suppressor promotes apoptosis through JAK/STAT1 pathway during lung carcinogenesis.

Environ Pollut

February 2023

Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China. Electronic address:

Numerous evidence showed that the occurrence and development of lung cancer is closely related to environmental pollution. Therefore, new environmental response predictive markers are urgently needed for early diagnosis and screening of lung cancer. Interferon-induced protein 44-like (IFI44L) has been shown to be related in a variety of tumors, but its function and mechanism during lung carcinogenesis still have remained largely unknown.

View Article and Find Full Text PDF

Junctional adhesion molecule 3 (JAM3) is involved in epithelial cell junction, cell polarity, and motility. The molecular mechanisms underlying the role of JAM3 in placental dysfunction remain unclear. We hypothesized that JAM3 expression regulates trophoblast fusion, differentiation, proliferation, and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!