Purpose: To compare a previous model-based image reconstruction (MBIR) with a newly developed deep learning (DL)-based image reconstruction for providing improved signal-to-noise ratio (SNR) in high through-plane resolution (1 mm) T2-weighted spin-echo (T2SE) prostate MRI.

Methods: Large-area contrast and high-contrast spatial resolution of the reconstruction methods were assessed quantitatively in experimental phantom studies. The methods were next evaluated radiologically in 17 subjects at 3.0 Tesla for whom prostate MRI was clinically indicated. For each subject, the axial T2SE raw data were directed to MBIR and to the DL reconstruction at three vendor-provided levels: (L)ow, (M)edium, and (H)igh. Thin-slice images from the four reconstructions were compared using evaluation criteria related to SNR, sharpness, contrast fidelity, and reviewer preference. Results were compared using the Wilcoxon signed-rank test using Bonferroni correction, and inter-reader comparisons were done using the Cohen and Krippendorf tests.

Results: Baseline contrast and resolution in phantom studies were equivalent for all four reconstruction pathways as desired. In vivo, all three DL levels (L, M, H) provided improved SNR versus MBIR. For virtually, all other evaluation criteria DL L and M were superior to MBIR. DL L and M were evaluated as superior to DL H in fidelity of contrast. For 44 of the 51 evaluations, the DL M reconstruction was preferred.

Conclusion: The deep learning reconstruction method provides significant SNR improvement in thin-slice (1 mm) T2SE images of the prostate while retaining image contrast. However, if taken to too high a level (DL High), both radiological sharpness and fidelity of contrast diminish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300170PMC
http://dx.doi.org/10.1007/s00261-024-04256-1DOI Listing

Publication Analysis

Top Keywords

image reconstruction
12
reconstruction
8
t2-weighted spin-echo
8
prostate mri
8
deep learning
8
phantom studies
8
evaluation criteria
8
fidelity contrast
8
contrast
6
comparison model-based
4

Similar Publications

Cranioventral pulmonary consolidation (CVPC) is a common lesion observed in the lungs of slaughtered pigs, often associated with Mycoplasma (M.) hyopneumoniae infection. There is a need to implement simple, fast, and valid CVPC scoring methods.

View Article and Find Full Text PDF

Optimizing hip MRI: enhancing image quality and elevating inter-observer consistency using deep learning-powered reconstruction.

BMC Med Imaging

January 2025

Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.

Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.

View Article and Find Full Text PDF

Purpose: It was noticed that anterior choroidal artery (AChoA) aneurysms appear to rupture at relatively smaller sizes compared with aneurysms in other intracranial locations, based on anecdotal clinical experience. We therefore aimed to compare ruptured AChoA aneurysms with other ruptured aneurysms in other intracranial locations, pertaining to aneurysm dimensions. This may help in finding out if the rupture risk stratification, based on the amalgamation of aneurysms of multiple locations in one group, precisely estimates aneurysm rupture risk.

View Article and Find Full Text PDF

The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.

View Article and Find Full Text PDF

Electron Tomography of Organelles and Vesicles in the Investigation of SNARE Function and Localization.

Methods Mol Biol

January 2025

Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, Cambridge, UK.

Electron tomography can provide additional morphological information not easily obtained by conventional transmission electron microscopy of thin sections. It uses a goniometer stage in the electron microscope to tilt the specimen and collect a series of 2D images from different orientations, which are combined to provide a 3D volume tomogram and a colored reconstruction of the morphological feature(s) of interest. Here we describe the protocols for its use in visualizing changes in organelle morphology after depletion of the SNARE proteins VAMP7 and VAMP8 and to study VAMP7 localization on endolysosomes/lysosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!