Introduction: The use of 3-dimensional (3D) printing techniques in fabricating crowns has increased the demand for bracket bonding onto these surfaces. The objective was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded onto 3D-printed crowns using primer-incorporated orthodontic adhesives and 3D printing materials as orthodontic adhesives.
Methods: A total of 160 crowns were printed with two 3D printing materials, DentaTOOTH (Asiga, Sydney, Australia) (group A) and NextDent C&B Micro Filled Hybrid (3D Systems, Soesterberg, Netherlands) (group N). Each group was randomly divided into 4 adhesive subgroups (n = 20): Transbond XT (for groups A [ATX] and N [NTX]; 3M Unitek, Monrovia, Calif), Ortho Connect (for groups A [AOC] and N [NOC]; GC Corporation., Tokyo, Japan), Orthomite LC (for groups A [AOM] and N [NOM]; Sun Medical, Co Ltd, Moriyama, Shiga, Japan), and unpolymerized liquid state of 3D printing resin (for groups A [AA] and N [NN]). SBS was measured with a universal testing machine at a crosshead speed of 0.5 mm/min. The adhesive remnant index and the mode of failure were analyzed under the microscope. Statistical analysis was performed at a significance level of α = 0.05.
Results: When used as adhesives (AA and NN), 3D printing materials showed no statistically significant difference in SBS compared with Transbond XT (ATX and NTX, respectively). In group N, NN showed a significantly higher SBS than primer-incorporated orthodontic adhesives (NOC and NOM; P <0.001). Adhesive failures were only observed in primer-incorporated orthodontic adhesives (AOC, NOC, AOM, and NOM).
Conclusions: Primer-incorporated orthodontic adhesives, as well as unpolymerized 3D printing materials employed as orthodontic adhesives on 3D-printed crowns, exhibited comparable bonding strength to Transbond XT without surface modification. Despite variations in adhesive-related factors, all measurements stayed within clinically acceptable ranges, highlighting the potential of these materials for orthodontic bonding on 3D-printed crowns, simplifying clinical procedures without compromising bond strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajodo.2024.01.013 | DOI Listing |
Nanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Prosthodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, Maharashtra, India, ORCID: https://orcid.org/0000-0002-6661-0931.
Aim: The aim of this systematic review was to evaluate the effect of build orientation on the mechanical and physical properties of additively manufactured resin using digital light processing (DLP).
Background: The properties of 3D-printed materials are influenced by various factors, including the type of additive manufacturing (AM) system and build orientation. There is a scarcity of literature on the effect of build orientation on the mechanical and physical properties of additively manufactured resins using DLP technology in dentistry.
Adv Mater
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.
View Article and Find Full Text PDFMater Today Bio
February 2025
Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.
Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!