Although sulfurated polymers promise unique properties, their controlled synthesis, particularly when it comes to complex and functional architectures, remains challenging. Here, we show that the copolymerization of oxetane and phenyl isothiocyanate selectively yields polythioimidocarbonates as a new class of sulfur containing polymers, with narrow molecular weight distributions (M=5-80 kg/mol with Đ≤1.2; M=124 kg/mol) and high melting points of up to 181 °C. The method tolerates different substituent patterns on both the oxetane and the isothiocyanate. Self-nucleation experiments reveal that π-stacking of phenyl substituents, the presence of unsubstituted polymer backbones, and the kinetically controlled linkage selectivity are key factors in maximising melting points. The increased tolerance to macro-chain transfer agents and the controlled propagation allows the synthesis of double crystalline and amphiphilic diblock copolymers, which can be assembled into micellar- and worm-like structures with amorphous cores in water. In contrast, crystallization driven self-assembly in ethanol gives cylindrical micelles or platelets.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202405047DOI Listing

Publication Analysis

Top Keywords

diblock copolymers
8
melting points
8
easy synthetic
4
synthetic access
4
access high-melting
4
high-melting sulfurated
4
sulfurated copolymers
4
copolymers self-assembling
4
self-assembling diblock
4
copolymers phenylisothiocyanate
4

Similar Publications

Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.

View Article and Find Full Text PDF
Article Synopsis
  • Bottlebrush block polymers feature densely grafted side chains from a backbone, allowing for large ordered morphologies suitable for applications like photonic crystals.
  • The study focused on creating a library of 50 triblock terpolymers (PLA-PEP-PS) through advanced polymerization techniques, leading to structures with complex phase behaviors.
  • Results indicated diverse mesoscopic structures and tunable unit cell dimensions, showcasing the potential of multiblock bottlebrushes for varied material applications.
View Article and Find Full Text PDF

Self-Assembly and Drug Encapsulation Properties of Biocompatible Amphiphilic Diblock Copolymers.

Langmuir

January 2025

Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Shosha, Himeji, Hyogo 671-2201, Japan.

To prepare amphiphilic diblock copolymers (MP), a controlled radical polymerization approach was employed, incorporating hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) with hydrophobic poly(3-methoxypropyl acrylate) (PMPA). The synthesized diblock copolymers feature a PMPC block with a degree of polymerization (DP) of 100 and a PMPA block with DP (=) values of 171 and 552. The hydrophilic PMPC block exhibits biocompatibility, such as inhibition of platelet and protein adsorption, because of its hydrophilic pendant zwitterionic phosphorylcholine groups that have the same chemical structure as cell membrane surfaces.

View Article and Find Full Text PDF

Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.

View Article and Find Full Text PDF

Acid-Enhanced Photoiniferter Polymerization under Visible Light.

Angew Chem Int Ed Engl

December 2024

ETH Zurich, Materials, Vladimir-​Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND.

Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT)  polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!