A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discriminating extra virgin olive oils from common edible oils: Comparable performance of PLS-DA models trained on low-field and high-field H NMR data. | LitMetric

Introduction: Olive oil, derived from the olive tree (Olea europaea L.), is used in cooking, cosmetics, and soap production. Due to its high value, some producers adulterate olive oil with cheaper edible oils or fraudulently mislabel oils as olive to increase profitability. Adulterated products can cause allergic reactions in sensitive individuals and can lack compounds which contribute to the perceived health benefits of olive oil, and its corresponding premium price.

Objective: There is a need for robust methods to rapidly authenticate olive oils. By utilising machine learning models trained on the nuclear magnetic resonance (NMR) spectra of known olive oil and edible oils, samples can be classified as olive and authenticated. While high-field NMRs are commonly used for their superior resolution and sensitivity, they are generally prohibitively expensive to purchase and operate for routine screening purposes. Low-field benchtop NMR presents an affordable alternative.

Methods: We compared the predictive performance of partial least squares discrimination analysis (PLS-DA) models trained on low-field 60 MHz benchtop proton (H) NMR and high-field 400 MHz H NMR spectra. The data were acquired from a sample set consisting of 49 extra virgin olive oils (EVOOs) and 45 other edible oils.

Results: We demonstrate that PLS-DA models trained on low-field NMR spectra are highly predictive when classifying EVOOs from other oils and perform comparably to those trained on high-field spectra. We demonstrated that variance was primarily driven by regions of the spectra arising from olefinic protons and ester protons from unsaturated fatty acids in models derived from data at both field strengths.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.3348DOI Listing

Publication Analysis

Top Keywords

models trained
16
olive oil
16
olive oils
12
edible oils
12
pls-da models
12
trained low-field
12
nmr spectra
12
olive
10
extra virgin
8
virgin olive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!